Pharmacology of the Neuromuscular Junction (NMJ)
Edward JN Ishac, Ph.D.
Professor

Department of Pharmacology and Toxicology
Medical College of Virginia
Campus of Virginia Commonwealth University
Richmond, Virginia, USA

Drugs of the Autonomic Nervous System

Myasthenia gravis
Autoimmune disease

1:10,000 (250,000 USA)

- antibodies to NMJ nicotinic receptors leads to degradation
- simplified synaptic folds
- normal nerve terminal and transmitter
- wider synaptic junction

Diagnosis: Edrophonium (Tensilon, short acting) is used for diagnosis and determination of maintenance dose

Treatment: Neostigmine has direct (stimulates receptor) and indirect actions (inhibition of AChE). No CNS activity.

NMJ Nicotinic Receptor

Ion Channel
- pentamer
- "Na" in, "K" out

Infant: \(\alpha_2\beta\delta\epsilon \)
Adult: \(\alpha_2\beta\delta\gamma \)
NMJ Blocking Agents
Paralysis: small rapidly moving muscles (eyes, fingers), then limbs, last is respiratory muscles (recovery in reverse order)

- Competitive (non-depolarizing) agents (curare)
 - compete with Ach for binding to receptor
 - flaccid, relaxed paralysis
 - non-NMJ effects: ganglia, muscarinic blocking, histamine release
 - NMJ block can be reversed by AchE inhibitors

- Non-competitive (depolarizing) agents (succinylcholine)
 Phase 1 block: - membrane depolarization
 - transient fasciculations followed by paralysis
 Phase 2 block: - desensitization
 - membrane repolarizes, hyposensitive to Ach
 - NMJ block not reversed by AchE inhibitors

Competitive (nondepolarizing) Blocking Agents - Curare
- Tubocurarine, dimethyltubocarine (metocarine)
 - no effect on nerve transmission
 - muscle can still be stimulated
 - 5-10mg (iv) produces flaccid paralysis
 - 10-20mg (iv) can produce apnea, not active orally
 - can cause histamine release (mast cells)
 - can block ganglionic receptors [higher concentrations]

Amazon hunter tips his darts with the poison curare

Competitive (nondepolarizing) NMBs - Others
- Pancuronium
 - more potent than tubocurarine (x5)
 - reduced histamine release than curare
 - lack of ganglionic blockade
- Rocuronium
 - fast onset (1-2min), 30-40min duration, hypersensitivity
- Atracurium (~10 isomers)
 - hydrolysis by AchE
 - replaced by cisatracurium, Hofmann degradation, organ independent
- Gallamine
 - also some muscarinic block
- Mivacurium
 - fast onset (2-4min), short acting (12-18min), hydrolysis by AchE, some histamine release

Adverse Effects and Treatment
- Adverse effects:
 - apnea (loss of respiration)
 - ganglionic blockade (tubocurarine)
 - histamine release (tubocurarine)
 - muscarinic block (gallamine)
 - hypotension (histamine release & ganglionic block)
 - no significant CNS effects

- Treatment of toxicity:
 - Acetylcholinesterase inhibitors ie. neostigmine

Depolarizing NMJ Blocking Agents
- Succinylcholine (decamethonium, not used)
 - Phase 1: depolarization, Phase 2: desensitization
 - fast onset (<1min), brief duration (5-10min)
 - metabolized by pseudocholinesterase
 - 'atypical' pseudo-AchE (1.10.000, long-lasting)
 - less histamine release than curare
 - less effect at ganglia than curare
 - not reversed by AchE inhibitors

FIG. 21

FIG. 22

FIG. 23
Succinylcholine: Adverse effects & treatment

- **Toxicity:**
 - similar to competitive blockers with less effects at ganglia or histamine release

- **Treatment:**
 - Artificial respiration
 - use of AChE inhibitors will not reverse NMJ blockade

- **Adverse reactions:**
 - 'Atypical' pseudo-AchE (1:10,000; prolonged apnea, 2-3hr)
 - Hyperkalemia (esp. burn, trauma patients, response delayed 2-7 days)
 - Malignant hyperthermia (esp. with halothane)

Hyperkalemia

- burn & trauma
- usually small ↑K+
- cardiac arrest
- support: dialysis glucose / insulin

Malignant Hyperthermia

- more likely with halothane
- 60% mortality
- ↑Ca++ → ↑ body temp
- tachycardia
- dysrhythmia
- ↑HR, muscle rigidity

Treatment:
- Dantrolene
 - drug of choice
 - ↓Ca++ release

Clinical Uses of NMJ Blocking Agents

- **Muscle relaxation in surgery**
 - decreases depth of anesthesia

- **Orthopedics**
 - dislocations, alignment of fractures

- **Facilitate intubations**
 - in mechanical artificial ventilation

- **Facilitate internal examinations**
 - laryngoscopy, bronchoscopy, esophagoscopy

- **Prevent trauma**
 - during electroshock therapy

- **Diagnostic**
 - tubocurarine (Myasthenia gravis), not commonly used
 - not recommended, Edrophonium (Tensolin) better

NMJ Agents: Drug Interactions

Synergism with certain agents → ↓ dose

- Calcium channel blockers ie. verapamil
 - ↓ Ach release

- Aminoglycoside antibiotic ie. neomycin
 - compete with Ca++
 - ↓ Ach release & stabilize membrane

- Certain general anesthetic ie. halothane
 - stabilize membrane
Direct Acting Neuromuscular Relaxant

- **Dantrolene (Dantrium)**
 - inhibits calcium release
 - significant liver toxicity
 - muscle weakness

- **Clinical uses:**
 - stroke
 - cerebral palsy
 - malignant hyperthermia (DOC)
 - multiple sclerosis

- **Other agents**
 - Benzodiazepines

Comparison of Competitive (d-Tubocurarine) and Non-competitive, depolarizing (Succinylcholine) Agents

<table>
<thead>
<tr>
<th>Tubocurarine</th>
<th>Succinylcholine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I</td>
<td>Phase II</td>
</tr>
<tr>
<td>Addition of succinylcholine</td>
<td>Antagonistic</td>
</tr>
<tr>
<td>Addition of tubocurarine</td>
<td>Additive</td>
</tr>
<tr>
<td>Effect of neostigmine</td>
<td>Reverse</td>
</tr>
<tr>
<td>Initial effect on striated muscle</td>
<td>None</td>
</tr>
<tr>
<td>Response to tetanic stimulation</td>
<td>Unsustained</td>
</tr>
</tbody>
</table>

Comparison of Competitive (d-Tubocurarine) and Non-competitive, depolarizing (Succinylcholine) Agents

<table>
<thead>
<tr>
<th>NMJ Blocking Agents – Other Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ganglia</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Succinylcholine</td>
</tr>
<tr>
<td>Tubocurarine</td>
</tr>
<tr>
<td>Metaocurine</td>
</tr>
<tr>
<td>Gallamine</td>
</tr>
<tr>
<td>Pancuronium</td>
</tr>
<tr>
<td>Vecuronium</td>
</tr>
<tr>
<td>Atracurium</td>
</tr>
<tr>
<td>Rocuronium</td>
</tr>
<tr>
<td>Mivacurium</td>
</tr>
</tbody>
</table>

Onset, Duration and Elimination of Neuromuscular Blocking Drugs

<table>
<thead>
<tr>
<th>Neuromuscular Blocking Drugs</th>
<th>Onset (min)</th>
<th>Duration (min)</th>
<th>Mode of elimination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Succinylcholine</td>
<td>1-2</td>
<td>6-8</td>
<td>Hydrolysis by AchE</td>
</tr>
<tr>
<td>Tubocurarine</td>
<td>4-6</td>
<td>90-120</td>
<td>Kidney, liver</td>
</tr>
<tr>
<td>Metaocurine</td>
<td>4-6</td>
<td>90-120</td>
<td>Kidney</td>
</tr>
<tr>
<td>Gallamine</td>
<td>4-6</td>
<td>90-120</td>
<td>Kidney</td>
</tr>
<tr>
<td>Pancuronium</td>
<td>4-6</td>
<td>90-120</td>
<td>Kidney, liver</td>
</tr>
<tr>
<td>Vecuronium</td>
<td>2-4</td>
<td>30-40</td>
<td>Kidney, liver</td>
</tr>
<tr>
<td>Atracurium</td>
<td>2-4</td>
<td>30-40</td>
<td>Hydrolysis by AchE</td>
</tr>
<tr>
<td>cisAtracurium</td>
<td>2-4</td>
<td>30-40</td>
<td>Hofmann degradation</td>
</tr>
<tr>
<td>Rocuronium</td>
<td>1-2</td>
<td>30-40</td>
<td>Liver</td>
</tr>
<tr>
<td>Pipecuronium</td>
<td>2-4</td>
<td>90-100</td>
<td>Kidney, liver</td>
</tr>
<tr>
<td>Mivacurium</td>
<td>2-4</td>
<td>12-18</td>
<td>Hydrolysis by AchE</td>
</tr>
</tbody>
</table>