Pharmacology of the Sympathetic Nervous System

Edward JN Ishac, Ph.D.
Professor

Department of Pharmacology and Toxicology
Medical College of Virginia
Campus of Virginia Commonwealth University
Richmond, Virginia, USA

Smith Building, Room 742
eishac@vcu.edu
828-2127

Neurons of the ANS

Adrenergic Nerve Terminal

MAO vs COMT

Inhibitors: Tolcapone, Pyrogallol
 Parkinson’s D with LDopa
 (rarely used, liver failure)

Inhibitors: Tranylcypromine, Pargyline
 Depression

Inhibitors: Clorgiline
 Selective MAO-A

Inhibitors: Selegiline
 MAO-B
Adrenergic Agents – Relative Selectivity

<table>
<thead>
<tr>
<th>RECEPTOR</th>
<th>TISSUE</th>
<th>ACTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha1</td>
<td>Coronary blood vessels, heart</td>
<td>Constriction, dilatation</td>
</tr>
<tr>
<td>EPI >> NE >> ISO</td>
<td>Contraction, relaxation</td>
<td></td>
</tr>
<tr>
<td>Alpha2</td>
<td>Platelets, smooth muscle</td>
<td>Aggregation, inhibition of lipolysis</td>
</tr>
<tr>
<td>NE > EPI >> ISO</td>
<td>Contraction, relaxation</td>
<td></td>
</tr>
<tr>
<td>Beta1</td>
<td>Heart, smooth muscle</td>
<td>Force, rate, conduction velocity</td>
</tr>
<tr>
<td>ISO = EPI = NE</td>
<td>Release, relaxation</td>
<td></td>
</tr>
<tr>
<td>Beta2</td>
<td>Smooth muscle, lung</td>
<td>Relaxation, relaxation</td>
</tr>
<tr>
<td>ISO > EPI > NE</td>
<td>Smooth muscle, relaxation</td>
<td></td>
</tr>
<tr>
<td>Alpha4</td>
<td>Fat cells</td>
<td>Lipolysis</td>
</tr>
</tbody>
</table>

Adrenergic / Cholinergic Agents

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Location</th>
<th>G Protein</th>
<th>2nd Messenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>α1</td>
<td>Effector tissues, smooth muscle, glands</td>
<td>Gq</td>
<td>Ca++, IP3, DAG</td>
</tr>
<tr>
<td>α2</td>
<td>Nerve endings, smooth muscle</td>
<td>Gi</td>
<td>cAMP</td>
</tr>
<tr>
<td>β1</td>
<td>Cardiac muscle, juxtaglomerular apparatus</td>
<td>Gs</td>
<td>cAMP</td>
</tr>
<tr>
<td>β2</td>
<td>Smooth muscle, lung</td>
<td>Gs</td>
<td>cAMP</td>
</tr>
<tr>
<td>β3</td>
<td>Adipose cells</td>
<td>Gs</td>
<td>cAMP</td>
</tr>
<tr>
<td>D1, D3</td>
<td>Renal, vascular SM, brain</td>
<td>Gs</td>
<td>cAMP</td>
</tr>
<tr>
<td>D2, D3, D4</td>
<td>Brain, cardiovascular</td>
<td>Gi</td>
<td>cAMP</td>
</tr>
</tbody>
</table>

Phospholipase C

G-Protein coupled receptors

Alpha1-receptors

Cholinergic
M1
M3
M5

Hepatocyte

Adrenergic

β2-AR

↑ cAMP

protein kinase A

phosphorylase kinase

β1-AR

IP3 / DAG

Ca++ / PKC

Ca++-dependent
phosphorylase K.

phosphorylase a

glycogenolysis

↑ glucose-1-P

glycogenolysis
Catecholamines

A. Norepinephrine (limited use, pressor agent, shock)
- Activates: both alpha, beta1, beta2, beta3 (weakest)
- Substrate for MAO & COMT, does not cross BBB

B. Epinephrine (DOC - Allergic reaction)
- Activates both alpha, beta1, beta2, beta3 (weakest)
- Substrate for MAO & COMT, does not cross BBB

C. Dopamine (DOC – septic shock)
- Precursor of NE and EPI
- Activates dopamine- (low dose), beta1- (moderate dose), alpha1-receptors (high dose)
- Substrate for MAO & COMT, does not cross BBB

D. Isoproterenol (asthma, cardiac stimulant)
- Activates all beta receptors
- Substrate for COMT, does not cross BBB

Non-Catecholamines – Beta agonists

- Selective beta2-agonists:
 Albuterol, metaproterenol, salmeterol (LABA)
 terbutaline, ritodrine

 Uses: asthma, premature labor

 Oral: Onset 1-2 hrs, duration 4-6 hrs

 Inhal: Onset 5-10 min, duration 3-4 hrs (fewer side effects)

- Adverse effects: cardiovascular (↑HR, ↓BP)

- Selective beta1-agonists:
 Dobutamine, pirenteronol

 Uses: Congestive heart failure
 Increase force, no change in HR or oxygen demand

Non-Catecholamines – Alpha agonists

- Selective alpha1-agonists:
 Methoxamine, phenylephrine, metaraminol (direct & indirect actions, orally active)

 Uses: hypotension or shock, nasal decongestant

- Selective alpha2-agonists:
 Clonidine, α-methylidopa (pro-drug), guanfacine

 Uses: chronic hypertension (CNS action)
 Opioid withdrawal (decrease severity)

 Side effects: impotence, dry mouth, rebound HT, sedation

Dexmedetomidine: CNS action, 2A selectivity, iv for sedation/analgesia in surgery, less respiratory depression, increasing use. Caution: hypovolemic patient

Tizanidine: CNS action to ↓muscle spasticity, CYP1A2

Non-Catecholamines – Alpha agonists

- Selective alpha1-agonists:
 Methoxamine, phenylephrine, metaraminol (direct & indirect actions, orally active)

 Uses: hypotension or shock, nasal decongestant

- Selective alpha2-agonists:
 Clonidine, α-methylidopa (pro-drug), guanfacine

 Uses: chronic hypertension (CNS action)
 Opioid withdrawal (decrease severity)

 Side effects: impotence, dry mouth, rebound HT, sedation

Dexmedetomidine: CNS action, 2A selectivity, iv for sedation/analgesia in surgery, less respiratory depression, increasing use. Caution: hypovolemic patient

Tizanidine: CNS action to ↓muscle spasticity, CYP1A2
Alpha₂-Adrenoceptors

CNS: hypotension, bradycardia, sedation, analgesia and ↓ muscle spasticity

Peripheral: ↓ salivation, ↓ secretion, ↓ bowel motility, contraction of vascular smooth muscle, diuresis

Dopamine Agonists

- **Fenoldopam:**
 - D₁A-agonist, no action on α₁- or β-receptors
 - used for acute hypertension
 - iv short-term infusion (<48 hrs)
 - SE: ↑ ocular pressure, ↑ HR

- **Bromocriptine, Pramipexole:**
 - Parkinson’s Disease
 - Restless leg syndrome (RLS)
 - SE: drowsiness

Parkinson’s Disease

- General population 1:1000, over 60 1:75
- Tremor, stiffness, or clumsiness, usually involving one side, difficulty walking, fatigue, depression
- Progressive destruction of the dopaminergic nigrostriatal pathway
- Elevated cholinergic activity

- **Treatment options:**
 - MAO inhibitors:
 - Dopamine agonists: bromocriptine pramipexole
 - L-Dopa
 - Anticholinergics: benztropine
 - Decarboxylase inhibitor: carbidopa
 - COMT inhibition

Indirectly-acting Sympathomimetics (displace transmitter)

- **Amphetamine, methamphetamine, methylphenidate**
 - CNS stimulant, performance enhancer, physical & mental abuse
 - ↑ alertness, mood, self-confidence, concentration, psychological dependence, tolerance, tachyphylaxis

- **Uses:** ADHD, appetite suppression (?), narcolepsy
- **Toxicity:** cardiovascular, restlessness, tremor, insomnia

- **Ephedrine (mixed)**
 - direct action (alpha- and beta-receptors)
 - indirect action to release norepinephrine

- **Uses:** nasal decongestant

- **Tyramine** (not a drug, interaction with MAO inhibitors)

Tachyphylaxis

1. Release of NE/DA from neurons
2. Inhibition of monoamine transmitter uptake
3. Binding to extracellular receptors
4. Inhibition of MAO

Amphetamine Action

1. Release of NE/DA from neurons
2. Inhibition of monoamine transmitter uptake
3. Binding to extracellular receptors
4. Inhibition of MAO
Indirectly-acting Sympathomimetics (cont.)

- **Amphetamine, methamphetamine, methylphenidate**
 - CNS stimulant, performance enhancer, physical & mental abuse
 - ↑ alertness, mood, self-confidence, concentration, psychological dependence, tolerance, tachyphylaxis

- **Uses:** ADHD, appetite suppression (?), narcolepsy

- **Toxicity:** cardiovascular, restlessness, tremor, insomnia

- **Ephedrine (mixed)**
 - Direct action (alpha- and beta-receptors)
 - Indirect action to release norepinephrine

- **Uses:** nasal decongestant

- **Tyramine**
 - (not a drug, interaction with MAO inhibitors)

Neuronal Uptake Inhibition

- **Inhibit neuronal uptake (Uptake1)**
 - Can prevent the action of indirectly acting agents (e.g., amphetamine) and can potentiate the effects of NE (i.e. not removed from synaptic junction).

- **Neuronal Uptake 1: 70-80%**
 - Cocaine
 - Tricyclic antidepressants (Imipramine, amitriptyline)
 - High dose: block alpha- & M-rec.
 - Atomoxetine (used for ADHD)

Tyramine Interaction with MAO Inhibitors

- **Can cause hypertensive crisis (↑BP, ↑HR)**

- **Aged cheese & red wine are rich in tyramine**

Table: MAO vs COMT

<table>
<thead>
<tr>
<th></th>
<th>MAO</th>
<th>COMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location in cell</td>
<td>Mitochondrial outer membrane</td>
<td>Cytosol</td>
</tr>
<tr>
<td>Location in body</td>
<td>Symp. nerve, placenta (MAO_A)</td>
<td>Liver, kidney, brain (MAO_A, MAO_B)</td>
</tr>
<tr>
<td>Effect of inhibition on NE levels</td>
<td>Increases NE level in symp. neuron, potentiates release of tyramine-like drugs</td>
<td>None/Minor effect</td>
</tr>
<tr>
<td>Inhibitors</td>
<td>Pargyline, tranylcypromine (non-selective)</td>
<td>Tolcapone, Entacapone, Pyrogallol</td>
</tr>
<tr>
<td>Clinical use of inhibitors</td>
<td>Depression (non-selective or MAO_A-selective)</td>
<td>Parkinson’s D</td>
</tr>
<tr>
<td>Interactions</td>
<td>MAO inhibitors potentiate effects of tyramine (due mainly to blocking metabolism of tyramine by MAO in liver)</td>
<td>None, liver failure</td>
</tr>
</tbody>
</table>

Parkinson’s Disease

- **General population:** 1:1000, over 60 1:75
- **Tremor, stiffness, or clumsiness, usually involving one side, difficulty walking, fatigue, depression**
- **Progressive destruction of the dopaminergic nigrostriatal pathway**
- **Elevated cholinergic activity**

- **Treatment options:**
 - MAO inhibitors:
 - Dopamine agonists: bromocriptine, pramipexole
 - L-Dopa
 - Decarboxylase inhibitor: carbidopa
 - Anticholinergics: benztropine
 - COMT inhibition

MAOI and Tyramine Crisis

- **↑ Blood pressure, ↑ Heart rate**
- **Treatment:** α-blocker or labetalol (α-, β-blocker)

- **Normally dietary tyramine is metabolized by MAO**

- **With MAO inhibition, octopamine is produced and stored in vesicles with NE**

- **Aged cheese, red wine are rich in tyramine**
Tyramine Interaction with MAO Inhibitors
Can cause hypertensive crisis (↑BP, ↑HR)
Aged cheese & red wine are rich in tyramine

Therapeutic uses: Sympathomimetics 1

- **Asthma** (major use)
 - bronchodilation with ↓airway resistance
 - beta2-selective agents eg. albuterol

- **Allergic Reactions**
 - acute hypersensitivity reactions (food, bee sting, drug allergy)
 - epinephrine (DOC)

- **Nasal Congestion** (common use)
 - vasoconstriction (ephedrine, phenylephrine)

- **Hypotension** (acute)
 - intoxication with antihypertensive agents, spinal anesthesia, hemorrhage
 - phenylephrine, methoxamine, metaraminol

Therapeutic uses: Sympathomimetics 2

- **Hypertension**
 - Chronic: centrally acting α2-receptor agonists (clonidine, α-methyl-dopa)
 - Acute: fenoldopam (D1A-agonist)

- **Shock** (Hypotension, need to treat cause)
 - dopamine (DOC), epinephrine, NE
 - blood loss, cardiac failure, septic shock
 - ↓tissue perfusion, need to maintain BP, cerebral flow

- **Congestive Heart Failure** (acute)
 - dobutamine, (dopamine)

- **Cardiac Heart Block & Cardiac Arrest**
 - epinephrine or isoproterenol

Therapeutic uses: Sympathomimetics 3

- **Parkinson’s Disease**
 - Inhibitors: MAO-B: selegiline, COMT: tolcapone
 - D-agonists: pramipexole Precursor: L-Dopa

- **Ophthalmic**
 - dilate the pupil (phenylephrine)
 - glaucoma (epinephrine)
 - also beta-blocking agents used (common)

- **Uterine Contraction**
 - suppress premature labor
 - ritodrine, terbutaline (not FDA approved)

- **Hyperactivity Disorder (ADHD)**
 - amphetamines, methylphenidate (ritalin)
 - NE uptake inhibition: atomoxetine

- **Others**: [obesity], narcolepsy: - amphetamines
Parkinson’s Disease

- General population: 1:1000, over 60 1:75
- Tremor, stiffness, or clumsiness, usually involving one side, difficulty walking, fatigue, depression
- Progressive destruction of the dopaminergic nigrostriatal pathway
- Elevated cholinergic activity

Treatment:
- MAO inhibitors:
- Dopamine agonists: bromocriptine, pramipexole
- L-Dopa
- Anticholinergics: benztropine
- Decarboxylase inhibitor: carbidopa
- COMT inhibition

Therapeutic uses: Sympathomimetics 3

- Parkinson’s Disease
 - Inhibitors: MAO-B: selegiline, COMT: tolcapone
 - D-agonists: pramipexole Precursor: L-Dopa
- Ophthalmic
 - dilate the pupil (phenylephrine)
 - glaucoma (epinephrine)
 also beta-blocking agents used (common)
- Uterine Contractions
 - suppress premature labor
 - ritodrine, terbutaline (not FDA approved)
- Hyperactivity Disorder (ADHD)
 - amphetamines, methylphenidate (ritalin)
 - NE uptake inhibition: atomoxetine
- Others: [obesity], narcolepsy: - amphetamines

Toxic effects of Sympathomimetics

- Extensions of their receptor-mediated effects
- Cardiovascular (main)
 - cardiac stimulation (β-AR, arrhythmias)
 - hypertension (α-AR, hemorrhage)
- CNS
 - Especially those that cross BBB (ie. amphetamine)
 - restlessness
 - dizziness
 - insomnia
- Alpha2-receptor agonists
 - dry mouth, sedation, impotence