Pharmacology of the Sympathetic Nervous System I

Edward JN Ishac, Ph.D.

Smith Building, Room 742
eishac@vcu.edu
8-2127 or 8-2126

Department of Pharmacology and Toxicology
Medical College of Virginia
Campus of Virginia Commonwealth University
Richmond, Virginia, USA

Neurons of the ANS

Adrenergic Nerve Terminal

Noradrenergic Neuron

Neuronal (Uptake1) vs Extraneuronal (Uptake2)

MAO vs COMT

<table>
<thead>
<tr>
<th></th>
<th>MAO</th>
<th>COMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location in cell</td>
<td>Mitochondrial outer membrane</td>
<td>cytosol</td>
</tr>
<tr>
<td>Location in body</td>
<td>symp. nerve, placenta (MAOα)</td>
<td>most tissues, not in sympath. nerve</td>
</tr>
<tr>
<td></td>
<td>platelets</td>
<td></td>
</tr>
<tr>
<td></td>
<td>liver, kidney, brain (MAOα + MAOβ)</td>
<td></td>
</tr>
<tr>
<td>Effect of inhibition on NE levels</td>
<td>Increases NE level in symp. neuron, potentiates release by tyramine-like drugs</td>
<td>minor/no effect</td>
</tr>
</tbody>
</table>
MAO vs COMT

MAO

- Inhibitors: Tolcapone, Pyrogallol
 - Parkinson’s D with L-Dopa (rarely used, liver failure)

COMT

- Inhibitors: Non-selective Depression
 - Tranylcypromine, Pargyline

- Inhibitors: Selective Depression
 - Selegiline

COMT vs MAO

RHO

\[
\begin{align*}
\text{COMT} & \quad \text{MAO} \\
\text{H}_2 \text{H}_2 & \quad \text{H}_2 \text{H}_2 \\
\text{CH}_3\text{O} \quad \text{R} & \quad \text{R} \\
\text{N} & \quad \text{CO} \quad \text{H} \\
\text{R} & \quad \text{C} \quad \text{O} \\
\text{R} & \quad \text{C} \quad \text{O} \\
\text{O} & \quad \text{CH}_2\text{OH}
\end{align*}
\]

Metabolism of Catecholamines

Major Metabolites

- VMA
- MOPEG

Metabolism by either MAO or COMT, inactivates drug

Receptor Subtypes

<table>
<thead>
<tr>
<th>α-Receptors</th>
<th>1948</th>
<th>70’s</th>
<th>α1-Receptors</th>
<th>90’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>α2-Receptors</td>
<td></td>
<td></td>
<td>α2A, α2B, α2C, α2D</td>
<td></td>
</tr>
<tr>
<td>α3-Receptors</td>
<td></td>
<td></td>
<td>α3A, α3B, α3C, α3D</td>
<td></td>
</tr>
</tbody>
</table>

- **PLC**
- \(\text{TCP}^{++}\)
- \(\text{TIP}_{2}\)
- \(\text{DAG}\)

\[\begin{align*}
\text{A/C} & \quad \text{cAMP} \\
\text{A/C} & \quad \text{cAMP}
\end{align*}\]

Second Messengers

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Location</th>
<th>G Protein</th>
<th>2nd Messenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>α1</td>
<td>Effector tissues: smooth muscle, glands</td>
<td>Gq</td>
<td>(\text{TCP}^{++}, \text{TIP}_{2}, \text{DAG})</td>
</tr>
<tr>
<td>α2</td>
<td>Nerve endings, smooth muscle</td>
<td>Gi</td>
<td>(\text{iAMP})</td>
</tr>
<tr>
<td>β1</td>
<td>Cardiac muscle, juxtaglomerular apparatus</td>
<td>Gs</td>
<td>(\text{cAMP})</td>
</tr>
<tr>
<td>β2</td>
<td>Smooth muscle, lung</td>
<td>Gs</td>
<td>(\text{cAMP})</td>
</tr>
<tr>
<td>β3</td>
<td>Adipose cells</td>
<td>Gs</td>
<td>(\text{cAMP})</td>
</tr>
<tr>
<td>D1, D2</td>
<td>Renal, vascular SM, brain</td>
<td>Gs</td>
<td>(\text{cAMP})</td>
</tr>
<tr>
<td>D3, D4</td>
<td>Brain, cardiovascular</td>
<td>Gs</td>
<td>(\text{iAMP})</td>
</tr>
</tbody>
</table>

Phospholipase C

- **G-Protein coupled receptors**
- **Adrenergic Alpha1-receptors**
- **Cholinergic**
 - M1
 - M3
 - M5

Adrenergic Agents – Relative Selectivity

<table>
<thead>
<tr>
<th>RECEPTOR</th>
<th>TISSUE</th>
<th>ACTIONS</th>
<th>ACTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha2 EPI >> NE >> ISO</td>
<td>smooth muscle contraction</td>
<td>smooth muscle relaxation</td>
<td></td>
</tr>
<tr>
<td>Alpha2 NE >> EPI = ISO</td>
<td>glandular tissue contraction</td>
<td>glandular tissue relaxation</td>
<td></td>
</tr>
<tr>
<td>Beta2 ISO >> EPI = NE</td>
<td>smooth muscle relaxation</td>
<td>smooth muscle contraction</td>
<td></td>
</tr>
<tr>
<td>Beta3 ISO >> EPI = NE</td>
<td>smooth muscle relaxation</td>
<td>smooth muscle contraction</td>
<td></td>
</tr>
</tbody>
</table>

Second Messengers

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Location</th>
<th>G Protein</th>
<th>2nd Messenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>α1</td>
<td>Effector tissues: smooth muscle, glands</td>
<td>Gq</td>
<td>(\text{TCP}^{++}, \text{TIP}_{2}, \text{DAG})</td>
</tr>
<tr>
<td>α2</td>
<td>Nerve endings, smooth muscle</td>
<td>Gi</td>
<td>(\text{iAMP})</td>
</tr>
<tr>
<td>β1</td>
<td>Cardiac muscle, juxtaglomerular apparatus</td>
<td>Gs</td>
<td>(\text{cAMP})</td>
</tr>
<tr>
<td>β2</td>
<td>Smooth muscle, lung</td>
<td>Gs</td>
<td>(\text{cAMP})</td>
</tr>
<tr>
<td>β3</td>
<td>Adipose cells</td>
<td>Gs</td>
<td>(\text{cAMP})</td>
</tr>
<tr>
<td>D1, D2</td>
<td>Renal, vascular SM, brain</td>
<td>Gs</td>
<td>(\text{cAMP})</td>
</tr>
<tr>
<td>D3, D4</td>
<td>Brain, cardiovascular</td>
<td>Gs</td>
<td>(\text{iAMP})</td>
</tr>
</tbody>
</table>
Adenylate Cyclase

G-Protein coupled receptors

- **Stimulate**
 - All Beta-receptors
 - D1, D5-receptors

- **Inhibit**
 - Alpha2-receptors
 - D2, D3, D4-receptors
 - M2, M4-receptors

Vasculature

norepinephrine / epinephrine

- α1-AR
 - IP3 / DAG
 - Ca++ / PKC
 - Vasoconstriction
 - Increase resistance
 - Increase BP

- β2-AR
 - ↑cAMP
 - protein kinase A
 - Vasodilation
 - Decrease resistance
 - Decrease BP

Catecholamines

A. **Norepinephrine** (limited use, pressor agent, shock)
 - Activates: both alpha, beta1, beta2, beta3 (weakest)
 - Substrate for MAO & COMT, does not cross BBB

B. **Epinephrine** (DOC - Allergic reaction)
 - Activates both alpha, beta1, beta2, beta3 (weakest)
 - Substrate for MAO & COMT, does not cross BBB

C. **Dopamine** (DOC – shock)
 - Precursor of NE and EPI
 - Activates alpha1, dopamine receptors
 - Substrate for MAO & COMT, does not cross BBB

D. **Isoproterenol** (asthma, cardiac stimulant)
 - Activates all beta receptors
 - Substrate for COMT, does not cross BBB

Non-Catecholamines

- **Selective beta2-agonists:**
 - albuterol, ritodrine, metaproterenol, terbutaline

 Uses: asthma, premature labor

 Oral: Onset 1-2 hrs, duration 4-6 hrs
 Inhal: Onset 5-10 min, duration 3-4 hrs (fewer side effects)

- **Adverse effects:** cardiovascular (↑HR, ↓BP)

- **Selective beta1-agonists:**
 - dobutamine, prenalternol

 Uses: Congestive heart failure
 Increase force, no change in HR or oxygen demand

Non-Catecholamines – Alpha agonists

- **Selective alpha1-agonists:**
 - methoxamine, phenylephrine, metaraminol (direct & indirect actions, orally active)

 Uses: hypotension or shock, nasal decongestant

- **Selective alpha2-agonists:**
 - clonidine, α-methyldopa (prodrg), guanfacine

 Uses: hypertension (CNS action)
 opioid withdrawal (decrease severity)

 Side effects: impotence, dry mouth, rebound HT

Drug of Choice

- **None effective orally**
- **Do not cross BBB**
- **Actions brief**

- **DOC**
 - Drug of Choice
Indirectly-acting Sympathomimetics (displace transmitter)

- Amphetamine, methamphetamine, methylphenidate
 - CNS stimulant, performance enhancer, physical & mental abuse
 - Alertness, mood, self-confidence, concentration, psychological dependence, tolerance, tachyphylaxis
- Uses: ADHD, appetite suppression (?), narcolepsy
- Toxicity: cardiovascular, restlessness, tremor, insomnia
- Ephedrine (mixed)
 - Direct action (alpha- and beta-receptors)
 - Indirect action to release norepinephrine
- Uses: nasal decongestant
- Tyramine (not a drug, interaction with MAO inhibitors)

Sudafed phenylephrine vs pseudoephedrine

Manufacturers, including Sudafed-maker Pfizer Inc., switched to phenylephrine from pseudoephedrine the past year after passage of a law requiring all pseudoephedrine products be sold from behind pharmacy counters.

Crystal Meth Drug Abuse

After 1.5 years of drug use

Indirectly-acting Sympathomimetics (cont.)

- Amphetamine, methamphetamine, methylphenidate
 - CNS stimulant, performance enhancer, physical & mental abuse
 - Alertness, mood, self-confidence, concentration, psychological dependence, tolerance, tachyphylaxis
- Uses: ADHD, appetite suppression (?), narcolepsy
- Toxicity: cardiovascular, restlessness, tremor, insomnia
- Ephedrine (mixed)
 - Direct action (alpha- and beta-receptors)
 - Indirect action to release norepinephrine
- Uses: nasal decongestant
- Tyramine (not a drug, interaction with MAO inhibitors)

Neuronal Uptake Inhibition

- Inhibit neuronal uptake (Uptake 1)
- Can prevent the action of indirectly acting agents (e.g. amphetamine) and can potentiate the effects of NE (i.e. not removed from synaptic junction).
- Neuronal Uptake 1: 70-80%
- Cocaine
 - Tricyclic antidepressants (Imipramine, amitriptylline)
 - High dose: block alpha- & M-rec.
- Atomoxetine (used for ADHD)
- Guanethedine (competes for uptake)
Tyramine Interaction with MAO Inhibitors

Can cause hypertensive crisis (↑BP, ↑HR)

Aged cheese & red wine are rich in tyramine

FIG. 7

Tyramine Interaction with MAO Inhibitors

Can cause hypertensive crisis (↑BP, ↑HR)

Aged cheese & red wine are rich in tyramine

FIG. 7

MAO vs COMT

<table>
<thead>
<tr>
<th>MAO</th>
<th>COMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location in cell</td>
<td>Mitochondrial outer membrane</td>
</tr>
<tr>
<td>Location in body</td>
<td>Symp, nerve, placenta platelets (MAO\textsubscript{A})</td>
</tr>
<tr>
<td>Effect of inhibition on NE levels</td>
<td>Increases NE level in symp. neuron, potentiates release by tyramine-like drugs</td>
</tr>
<tr>
<td>Inhibitors</td>
<td>Pargyline, tranylcypromine (non-selective) Clorgyline (MAO\textsubscript{A}-selective) Selegiline (MAO\textsubscript{B}-selective)</td>
</tr>
<tr>
<td>Clinical use of inhibitors</td>
<td>Depression (non-selective or MAO\textsubscript{B}-selective) Parkinson’s disease (MAO\textsubscript{A}-selective)</td>
</tr>
<tr>
<td>Interactions</td>
<td>MAO inhibitors potentiate effects of tyramine (due mainly to blocking metabolism of tyramine by MAO in liver)</td>
</tr>
</tbody>
</table>

Parkinson’s Disease

- General population 1:1000, over 60 1:75
- Tremor, stiffness, or clumsiness, usually involving one side, difficulty walking, fatigue, depression
- Progressive destruction of the dopaminergic nigrostriatal pathway
- Elevated cholinergic activity

- Treatment:
 - MAO inhibitors:
 - Dopamine agonists: bromocriptine
 - L-Dopa
 - Anticholinergics: benztrapine
 - Decarboxylase inhibitor: carbidopa
 - Amantadine: Inhibit D-uptake, M-rec, NMDA-block, release dopamine

MAOI and Tyramine Crisis

- ↑Blood pressure, ↑Heart rate
- Treatment: α-blocker or labetalol (α, β-blocker)
- Normally dietary tyramine is metabolized by MAO
- With MAO inhibition, octopamine is produced and stored in vesicles with NE
- Aged cheese, red wine are rich in tyramine

Therapeutic uses: Sympathomimetics 1

- Asthma (major use)
 - bronchodilatation with ↓airway resistance
 - β\textsubscript{2}-selective agents eg. albuterol

- Allergic Reactions
 - acute hypersensitivity reactions (food, bee sting, drug allergy)
 - epinephrine (DOC)

- Nasal Decongestant (common use)
 - vasoconstriction (ephedrine, phenylephrine)

- Hypotension (acute)
 - intoxication with antihypertensive agents, spinal anesthesia, hemorrhage
 - phenylephrine, methoxamine, metaraminol
Asthma

- **Albuterol**
- **Terbutaline, Metaproterenol**
- β₂-selective agonists - bronchodilation
- Inhalation vs oral - less side effects
- **Ritodrine** - premature labor

Therapeutic uses: Sympathomimetics 1

- **Asthma** (major use)
 - bronchodilation with ↓airway resistance
 - beta²-selective agents eg. albuterol
- **Allergic Reactions**
 - acute hypersensitivity reactions (food, bee sting, drug allergy)
 - epinephrine (DOC)
- **Nasal Decongestant** (common use)
 - vasoconstriction (ephedrine, phenylephrine)
- **Hypotension** (acute)
 - intoxication with antihypertensive agents, spinal anesthesia, hemorrhage
 - phenylephrine, methoxamine, metaraminol

Therapeutic uses: Sympathomimetics 2

- **Hypertension** (chronic)
 - centrally acting α₂-receptor agonists (clonidine, α₂-methyl-dopa)
- **Shock** (need to treat cause)
 - dopamine (DOC), epinephrine, NE
 - blood loss, cardiac failure, septic shock, cardiac obstruction
 - inadequate perfusion of tissues, need to maintain BP and cerebral blood flow
- **Congestive Heart Failure**
 - dobutamine (acute)
- **Cardiac Heart Block & Cardiac Arrest**
 - epinephrine or isoproterenol

Therapeutic uses: Sympathomimetics 3

- **Ophthalmic**
 - dilate the pupil (phenylephrine)
 - glaucoma (epinephrine)
 - also beta-blocking agents used (common)
- **Uterine Contraction**
 - suppress premature labor
 - ritodrine, terbutaline (not FDA approved)
- **Hyperactivity Disorder (ADHD)**
 - amphetamines, methylphenidate (ritalin)
 - NE uptake inhibition: atomoxetine
- **Others**: obesity, narcolepsy
 - amphetamine-like agents

Toxic effects of Sympathomimetics

- Extensions of their receptor-mediated effects
- **Cardiovascular** (main)
 - cardiac stimulation (β-AR, arrhythmias)
 - hypertension (α-AR, hemorrhage)
- **CNS**
 - Especially those that cross BBB (ie. amphetamine)
 - restlessness
 - dizziness
 - insomnia
- **Alpha₂-receptor agonists**
 - dry mouth, sedation, impotence