Congestive Heart Failure (CHF)

Edward JN Ishac, Ph.D.

Smith Building, Room 742
eishac@vcu.edu
828-2127

Department of Pharmacology and Toxicology
Medical College of Virginia
Campus of Virginia Commonwealth University
Richmond, Virginia, USA

Leading Causes of Death in the U.S

Data NIH 2000
Congestive Heart Failure (CHF)

CO inadequate for body demand of oxygen (demand-supply)

4.7 million in USA

50% mortality @ 5 year

400,000 new cases each year

Blood flow at rest and exercise
CHF - % Hospitalization

Principal Ambulatory Care Sensitive Conditions Resulting in Hospitalization

- **Kidney Infection**: 9.20
- **Dehydration**: 16.40
- **Diabetes**: 11.10
- **Bacterial Pneumonia**: 13.90
- **Congest. Heart Failure**: 16.10

Congestive Heart Failure (CHF) - Definition

Compensated heart failure:
- resting cardiac function, OK
- excessive stress or exercise, No

Congestive heart failure (CHF, uncompensated):
- resting cardiac function inadequate
- venous pooling → edema, especially lungs
- shortness of breath

Causes
- myocardial ischemia
- coronary artery disease
- hypertension
- toxic injury by chemicals
- congenital or genetic abnormalities
Hemodynamic Changes

BP is well maintained in CHF:
- ↑ sympathetic tone (tachycardia)
- ↓ parasympathetic tone
- activation of renin-angiotensin system
- ↑ blood volume
- ↑ vasopressin release

Consequences:
- ↓ force of contraction
- ↓ CO, ↑ TPR, ↓ stroke volume
- ↑ venous pressure, ↓ tissue perfusion
- cardiac hypertrophy
- Na⁺ & water retention
- edema

Heart Physiology

<table>
<thead>
<tr>
<th>mM</th>
<th>Na⁺</th>
<th>K⁺</th>
<th>Ca⁺⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out</td>
<td>140</td>
<td>4</td>
<td>2.5</td>
</tr>
<tr>
<td>In</td>
<td>10</td>
<td>150</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Cardiac Glycosides inhibit Na⁺/K⁺-ATPase
Cardiac Muscle Contraction

![Diagram of cardiac muscle contraction](image)

Ion movements during the contraction of cardiac muscle.

CHF Therapy Overview

Non-Drug:
- rest (reduced activity)
- salt restriction (<1gm/day)

Drug Therapy:
A. Positive inotropic agents:
 - cardiac glycosides eg. digoxin, digitoxin
 - catecholamines eg. dobutamine
 - phosphodiesterase inhibitors eg. amrinone

B. Beta-blockers (caution) eg. metoprolol
C. Diuretics eg. thiazides, Loop
D. ACE inhibitors / ARB eg. captopril / losartan
E. Vasodilators (non-inotropic) eg. hydralazine, beta natriuretic peptide
Frank-Starling Curve

Need to bring curve to normal without an increase in HR

1. NORMAL HEART
 - Within limits, when cardiac muscle is stretched, its force of contraction increases, and hence, cardiac output increases.
 - However, if the ventricle is overly stretched, the effect of ventricular contraction is diminished.
 - A is the normal operating point in the healthy heart.

2. DECOMPENSATED HEART FAILURE
 - Initial reduction of contractility (B to C) due to CHF.
 - Symptoms of low cardiac output develop, for example, dyspnea and edema.

3. COMPENSATED HEART FAILURE
 - Ventricular end-diastolic pressure increases (B to C) in an effort to maintain an adequate cardiac output.
 - The increased ventricular end-diastolic pressure causes symptoms of congestion, for example, dyspnea.

4. DIGITALIS TREATMENT
 - Administration of digoxin shifts ventricular function curve toward normal.
 - Increased contractility (C to A) leads to increased cardiac output.
 - Decreased sympathetic reflexes and vascular tone cause decrease in ventricular end-diastolic pressure (A to B).

Cardiac Glycosides

Source:
- white and purple foxglove (Digitalis lanata and D. purpurea)
- Mediterranean sea onion (Strophantus gratus) - ouabain
- numerous other plants
- certain toads

History:
- Egyptians (3000 yr ago) - diuretic effect, tones the heart
- 1785, clinical effect of foxglove plant described (Digitalis purpurea)
Cardiac Glycosides Chemistry

Steroid nucleus:
- lipophilic
- essential for activity, OH is very reactive (synthesis)

Unsaturated five-membered lactone ring:
- hydrophilic, essential for activity
- opening the ring → loss of activity
- saturation → loss of activity

Series of sugars linked to C 3 of the steroid nucleus
- nonessential, hydrophilic

[Diagram of cardiac glycosides structure]

Figure 13-3. Structure of digoxin, a typical cardiac glycoside.

Digitalis Glycosides

<table>
<thead>
<tr>
<th>Agent</th>
<th>Route</th>
<th>Bioavail. %</th>
<th>Bound%</th>
<th>Peak effect</th>
<th>T1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digoxin</td>
<td>oral, iv</td>
<td>45-85</td>
<td>25</td>
<td>6 hr</td>
<td>35 hr (kidney)</td>
</tr>
<tr>
<td>Digitoxin</td>
<td>oral, iv</td>
<td>>90</td>
<td>90</td>
<td>12 hr</td>
<td>6-7 day (liver)</td>
</tr>
</tbody>
</table>

Digoxin:
- absorption by gut bacteria (10% Eubact. lentum)
- unchanged excretion by kidney, not removed by dialysis
- crosses the placenta

Digitoxin:
- good oral absorption
- metabolized by the liver (cardioactive metabolites)
- large interpatient variations (bacterial flora)
- enterohepatic recycling
Mechanism of Action

Cardiac glycosides (CG)
- Inhibition of Na⁺/K⁺ ATPase (Na⁺ pump)
- membrane bound transporter (3 Na⁺ / 2 K⁺)
- found all over the body, α/β-subunits
- 3 mammalian isoforms
- extracytoplasmic binding site for CG
- phosphorylation of cytosol α-subunit → stabilize CG binding
- ↑ [K⁺]EC → dephosphorylates α-subunit → ↓ CG binding
- ↓ [K⁺]EC → phosphorylates α-subunit → ↑ CG intoxication

Inhibition of (Na+, K+-ATPase)
→ ↓ exchange Na⁺ - K⁺ (3:2)
→ ↑ [Na⁺]IC (8 → 9 - 9.5 mM)
→ ↑ Na⁺ - Ca²⁺ exchange (3:1) (depolarized)
→ ↑ [Ca²⁺]IC
→ ↑ SR uptake Ca²⁺ (↑ stores)
→ ↑ contractile force

Cardiac Muscle Contraction

Figure 16.3
Ion movements during the contraction of cardiac muscle.
Therapeutic consequence of Cardiac Gycosides

Moderate but persistent positive ionotropic effect, ↑ sensitivity of the baroreceptor reflex

→ ↑ CO → ↓ sympathetic activity
→ ↓ HR and vascular tone
→ ↓ pre- and afterload to heart
→ ↓ heart size
→ ↓ oxygen demand

→ ↑ CO → ↑ renal blood flow
→ improved GFR
→ ↓ renin-angiotensin activity level
→ ↑ Na⁺ excretion → ↓ body Na⁺
→ ↓ volume + vascular reactivity
→ ↓ pre- and afterload

Summary of the Effects of CHF and the Results of Digitalis Administration

<table>
<thead>
<tr>
<th></th>
<th>Heart Failure</th>
<th>Digitalis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myocardial contractility</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>End diastolic and venous pressure</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>Cardiac output</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>Renal blood flow</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>Blood volume</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>Heart rate</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>Heart size</td>
<td>↑</td>
<td>↓</td>
</tr>
</tbody>
</table>
Dosage & Toxicity

<table>
<thead>
<tr>
<th></th>
<th>Digoxin</th>
<th>Digitoxin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Therapeutic [plasma]</td>
<td>0.5 – 2 ng/ml</td>
<td>10 – 25 ng/ml</td>
</tr>
<tr>
<td>Toxic [plasma]</td>
<td>> 2 ng/ml</td>
<td>> 35 ng/ml</td>
</tr>
</tbody>
</table>

Narrow therapeutic window (50%):
- → oscilatory afterdepolarization
- → ventricular tachycardia

Drug Interactions & Toxicity

Important interactions:
- Hypokalaemia → ↑ CG binding (esp. with diuretics)
- Quinidine → displaces CG from tissue binding
- Ca++-blockers → enhance effect (eg. verapamil)
- Catecholamines → enhance toxicity
- Cholestyramine → ↓ absorption of CG
- Thyroid state → Hyper ↓[CG], Hypo ↑[CG] via elimination

Treatment of Toxicity:
- a. discontinue agent, lower dose
- b. K⁺ → ↓ arrhythmias (esp. with diuretics)
- c. use of antiarrhythmic agent eg. lidocaine, phenytoin
- d. antidigoxin antibodies eg. digoxin immune FAB
Catecholamines

Dobutamine Dopamine
- acute, emergency treatment
- ↑ cAMP → ↑ Ca++ influx
- after CG, dobutamine most commonly used (iv, acute)

Phosphodiesterase Inhibitors:
 Amrinone Milrinone
- chronic and acute treatment
- additional benefit → asthma
- ↑ cAMP → ↑ Ca++ influx (as per catecholamines)
- reported to have less inotropic effect
- long-term higher mortality than cardiac glycosides or other treatments

Catecholamines – Mechanism of Action in CHF
Drugs without Positive Inotropic Effects used in CHF

A. Angiotensin converting enzyme (ACE) inhibitors / ARBs
 - Captopril
 - Lisinopril
 - Enalapril
 - Losartan (ARB)
 - side benefit → hypertension
 - decrease load
 - frontline, increasing in use
 - maybe used in combination with CG
 - hyperkalemia, dry cough (ACEI), loss of taste (Zn loss), angioedema, glossitis (<5%), tetrogenic
 - need to take before or after meals

ACEI – Angioedema; Glossitis

- Less than 5%
- Dry mouth
- Glossitis
- Oral ulceration (Stevens-Johnson Syndrome)
- Oral bleeding
B. Beta-Blockers

Metoprolol, Labetalol, Carvedilol

Main action to decrease HR and catecholamine action on the heart

Positive Actions
- ↓myocardial O₂ consumption (demand) by ↓HR and ↓force contraction
- ↓BP → ↓after load, ↓pre load (less)

Negative Actions
- remove positive sympathetic activity
- decrease cardiac contractility

β-Blockers: Heart Failure

• Old view (before 2002)
Contraindicated: β-blockers can precipitate latent heart failure by removing compensatory increase in sympathetic effects on heart. Pindolol has less of this effect due to intrinsic activity.

• New view
May be used for CHF with caution. Not suitable in unstable heart failure, or evidence of bronchospasm, fluid overload, significant bradycardia (decreased cardiac reserve) or depression.
MERIT-HF: Use of Metoprolol in CHF

- Metoprolol (n=1990) vs Placebo (n=2001)
- β₁-selective, no ISA, LA-action
- USA & 13 European countries
- All received conventional medication
- Monitored 1 – 1.5 years

- Mortality ↓34%
- Hospitalization ↓29%
- Felt better ↑25%

Mechanism of Action

- β-Adrenoceptor blockers
 - ↓ cns sympathetic outflow
 - ↓ BP
 - ↓ cardiac output
 - ↓ peripheral resistance
 - ↓ angiotensin II
 - ↓ aldosterone
 - ↓ sodium, water retention
 - ↓ blood volume
 - ↓ decrease in blood pressure
Beta-Blockers in CHF: 2002 Guideline

C. Diuretics (frontline)
- loop (acute & chronic), thiazide diuretics (chronic)
- potassium-sparing used in combo Rx
- ↓ plasma volume → ↓ venous return (preload)
- relieve pulmonary congestion & peripheral edema
- K⁺ loss (loop, thiazides): interaction with CG

D. Direct Vasodilators
- not Ca⁺⁺ antagonists
- dilation of venous vessels → ↓ preload
- dilation of arterioles → ↓ afterload
- hydralazine → ↑ cGMP → relaxation
- hydralazine+isosorbide dinitrate (BiDil)
- beta natriuretic peptide short T₁/₂ 20 sec; (iv., severe CHF) → ↑ cGMP
Vasodilators

- relax smooth muscle of arterioles → ↓ TPR
- high clinical value (in combinations for CHF and hypertensive emergencies)

Hydralazine
- EDRF / Nitric oxide (NO) / cGMP involvement
- dilate arterioles but not veins
- ↓ TPR → ↓ BP → reflex tachycardia

Adverse effects:
- reflectory sympathetic activation
- headache, nausea, sweating, flushing
- palpitations, ↑ HR → angina
- lupus reaction (mainly in slow acetylators)

Actions of Vasodilators

<table>
<thead>
<tr>
<th>Ca** Antagonists</th>
<th>Open K* Channels</th>
<th>Nitric Oxide (NO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verapamil</td>
<td>Minoxidil</td>
<td>Hydralazine</td>
</tr>
<tr>
<td>Nifedipine</td>
<td>Diazoxide</td>
<td>β-natriuretic peptide</td>
</tr>
</tbody>
</table>

Ca channel blockers

- ATP → cAMP
- MLCK→ MLCK-P~O~2~
- Myosin-LC kinase
- Myosin-LC

Open K* Channels

- cAMP
- MLC
- Myosin-LC

Nitric Oxide (NO)

- NO
- GMP
- Guanylyl cyclase

Diagram:

- Ca** channel blockers
- ATP
- cAMP
- Myosin-LC kinase
- Myosin-LC
- MLCK
- MLCK-P~O~2~
- Contraction
- Relaxation

- GTP
- MLCK
- Myosin-LC
- Myosin-LC-P~O~4~
- Contraction
- Relaxation
Table 2. Drugs Commonly Used for Treatment of Chronic Heart Failure

<table>
<thead>
<tr>
<th>Drug</th>
<th>Initial Dose</th>
<th>Maximum Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop diuretics*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bumetanide</td>
<td>0.5 to 1.0 mg once or twice daily</td>
<td>Titrated to achieve dry weight</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(up to 10 mg daily)</td>
</tr>
<tr>
<td>Furosemide</td>
<td>20 to 40 mg once or twice daily</td>
<td>Titrated to achieve dry weight</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(up to 400 mg daily)</td>
</tr>
<tr>
<td>Torsemide</td>
<td>10 to 20 mg once or twice daily</td>
<td>Titrated to achieve dry weight</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(up to 200 mg daily)</td>
</tr>
<tr>
<td>ACE Inhibitors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Captopril</td>
<td>6.25 mg 3 times daily</td>
<td>50 mg 3 times daily</td>
</tr>
<tr>
<td>Enalapril</td>
<td>2.5 mg twice daily</td>
<td>10 to 20 mg twice daily</td>
</tr>
<tr>
<td>Lisinopril</td>
<td>5 to 10 mg once daily</td>
<td>40 mg once daily</td>
</tr>
<tr>
<td>Ramipril</td>
<td>2.5 to 5.0 mg once daily</td>
<td>20 to 40 mg once daily</td>
</tr>
<tr>
<td>Betaxazole</td>
<td>1.25 to 2.5 mg once daily</td>
<td>10 mg once daily</td>
</tr>
<tr>
<td>Betaxazole</td>
<td>1.25 mg once daily</td>
<td>10 mg once daily</td>
</tr>
<tr>
<td>Betaxazole</td>
<td>1.25 mg once daily</td>
<td>10 mg once daily</td>
</tr>
<tr>
<td>Betaxazole</td>
<td>1.25 mg once daily</td>
<td>10 mg once daily</td>
</tr>
<tr>
<td>Betaxazole</td>
<td>1.25 mg once daily</td>
<td>10 mg once daily</td>
</tr>
<tr>
<td>Betaxazole</td>
<td>1.25 mg once daily</td>
<td>10 mg once daily</td>
</tr>
<tr>
<td>Betaxazole</td>
<td>1.25 mg once daily</td>
<td>10 mg once daily</td>
</tr>
<tr>
<td>Betaxazole</td>
<td>1.25 mg once daily</td>
<td>10 mg once daily</td>
</tr>
<tr>
<td>Betaxazole</td>
<td>1.25 mg once daily</td>
<td>10 mg once daily</td>
</tr>
<tr>
<td>Betaxazole</td>
<td>1.25 mg once daily</td>
<td>10 mg once daily</td>
</tr>
<tr>
<td>Betaxazole</td>
<td>1.25 mg once daily</td>
<td>10 mg once daily</td>
</tr>
<tr>
<td>Betaxazole</td>
<td>1.25 mg once daily</td>
<td>10 mg once daily</td>
</tr>
<tr>
<td>Betaxazole</td>
<td>1.25 mg once daily</td>
<td>10 mg once daily</td>
</tr>
<tr>
<td>Betaxazole</td>
<td>1.25 mg once daily</td>
<td>10 mg once daily</td>
</tr>
<tr>
<td>Betaxazole</td>
<td>1.25 mg once daily</td>
<td>10 mg once daily</td>
</tr>
<tr>
<td>Betaxazole</td>
<td>1.25 mg once daily</td>
<td>10 mg once daily</td>
</tr>
<tr>
<td>Betaxazole</td>
<td>1.25 mg once daily</td>
<td>10 mg once daily</td>
</tr>
<tr>
<td>Betaxazole</td>
<td>1.25 mg once daily</td>
<td>10 mg once daily</td>
</tr>
<tr>
<td>Betaxazole</td>
<td>1.25 mg once daily</td>
<td>10 mg once daily</td>
</tr>
<tr>
<td>Betaxazole</td>
<td>1.25 mg once daily</td>
<td>10 mg once daily</td>
</tr>
<tr>
<td>Betaxazole</td>
<td>1.25 mg once daily</td>
<td>10 mg once daily</td>
</tr>
<tr>
<td>Betaxazole</td>
<td>1.25 mg once daily</td>
<td>10 mg once daily</td>
</tr>
<tr>
<td>Betaxazole</td>
<td>1.25 mg once daily</td>
<td>10 mg once daily</td>
</tr>
<tr>
<td>Betaxazole</td>
<td>1.25 mg once daily</td>
<td>10 mg once daily</td>
</tr>
<tr>
<td>Betaxazole</td>
<td>1.25 mg once daily</td>
<td>10 mg once daily</td>
</tr>
<tr>
<td>Betaxazole</td>
<td>1.25 mg once daily</td>
<td>10 mg once daily</td>
</tr>
<tr>
<td>Betaxazole</td>
<td>1.25 mg once daily</td>
<td>10 mg once daily</td>
</tr>
<tr>
<td>Betaxazole</td>
<td>1.25 mg once daily</td>
<td>10 mg once daily</td>
</tr>
</tbody>
</table>

Pharmacotherapy of Congestive Heart Failure: 2004

<table>
<thead>
<tr>
<th>NYHA</th>
<th>Pharmacotherapy</th>
</tr>
</thead>
</table>
| Class I (no limitations on activity) | ACE Inhibitor/AT
, - RB |
| Class II (slight, mild limitation of activity) | Digoxin*, Furosemide, ACE Inhibitor/AT
, - RB, Beta blocker |
| Class III (marked limitation of activity) | Bi-Ventricle pacing Bidil Digoxin*, Furosemide, Thiazide, ACE Inhibitor/AT
, - RB, Beta blocker/ K+-sparing |
| Class IV (complete rest, confined to bed or chair) | Bi-Ventricle pacing Bidil Digoxin*, Furosemide (IV), Thiazide, ACE Inhibitor/AT
, - Receptor blocker, K+-sparing/Inotropic Therapy/ Beta-Natriuretic Peptide |

Recommended Digoxin not be used in the female for routine CHF. 8/10/04
Recommended Pharmacotherapy of CHF requires 4 or more agents