Hypertension and Antihypertensive Agents

Edward JN Ishac, Ph.D.

Smith Building, Room 742
eishac@vcu.edu
8-2127 8-2126

Department of Pharmacology and Toxicology
Medical College of Virginia
Campus of Virginia Commonwealth University
Richmond, Virginia, USA

Leading Causes of Death in the U.S

Data NIH 2000
Agents used in the treatment of HT, CHF, Arrhythmia and Angina

<table>
<thead>
<tr>
<th>Drug Class</th>
<th>Hypertension</th>
<th>CHF</th>
<th>Arrhythmia</th>
<th>Angina</th>
<th>Contraindications/Cautions/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta-Blockers</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>Caution: CHF (unstable CHF, bronchospasm, significant bradycardia); or in diabetes, asthma (use β1-selective), depression</td>
</tr>
<tr>
<td>Ca++-Channel blockers</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️</td>
<td>CHF, Gingival hyperplasia, reflex tachycardia, constipation</td>
</tr>
<tr>
<td>ACEI / ARBs</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️</td>
<td>Low GFR, renal stenosis, glossitis, tetrogenic, cough (ACEI), taste, ↑renal mechanics</td>
</tr>
<tr>
<td>Diuretics</td>
<td>✔️ ✔️ ✔️ ✔️</td>
<td>✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️</td>
<td>Low GFR, hypokalemia → CG; glucose intolerance → diabetes</td>
</tr>
<tr>
<td>Cardiac glycosides</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️</td>
<td>Many Rx interactions, low Ti, [K+] ; important, low K+↑toxicity</td>
</tr>
<tr>
<td>Vasodilators</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️</td>
<td>Flushing, dizziness, headache, reflex tachycardia, combo Rx</td>
</tr>
<tr>
<td>Na+-Channel blockers</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️</td>
<td>Effects enhanced in depolarized tissue, damaged tissue. Phase 0</td>
</tr>
<tr>
<td>Nitrates</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️</td>
<td>Tolerance, flushing, dizziness, headache, reflex tachycardia</td>
</tr>
</tbody>
</table>

Introduction

Blood Pressure Regulation: Frank’s Formula

\[BP = \text{Cardiac output (CO)} \times \text{Total peripheral resistance (TPR)} \]

\[\text{CO} = \text{Stroke volume (SV)} \times \text{Heart rate (HR)} \]

120/80 mmHg

70 bpm

Fast acting

Long acting
Baroreceptor Reflex Arc

- oppose direct change in BP
- bidirectional, responds to ↑ or ↓ in BP
- not concerned with HR
- not concerned with pulse pressure

Increase stretch → increase firing of baroreceptors

Systolic – Diastolic Blood Pressure
Definition of Hypertension (HT)

Sustained elevation of systolic and/or diastolic BP above an arbitrarily defined level
- systolic >139 mmHg and/or diastolic >89 mmHg

General population (15-20%) hypertensive

45 – 60 million in USA

Secondary HT (10%): can be cured by surgical procedures (early diagnosis of cause, ie renal stenosis, pheochromocytoma)

Primary (essential) HT (90%): is a lifelong disease, long-term control & treatment, cause unknown

New Blood Pressure Classification – JNC VII

<table>
<thead>
<tr>
<th>BP Classification</th>
<th>SBP mmHg</th>
<th>DBP mmHg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td><120</td>
<td><80</td>
</tr>
<tr>
<td>Pre-hypertension</td>
<td>120–139</td>
<td>80–89</td>
</tr>
<tr>
<td>Stage 1 Hypertension</td>
<td>140–159</td>
<td>90–99</td>
</tr>
<tr>
<td>Stage 2 Hypertension</td>
<td>>160</td>
<td>>100</td>
</tr>
</tbody>
</table>

*Require three measurements (repeat visits)
BP lowest in the morning → ↑ during the day
Previous Classification of Hypertension (<2003)

<table>
<thead>
<tr>
<th>Systolic (mmHg)</th>
<th>Diastolic (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td><130</td>
</tr>
<tr>
<td>High normal</td>
<td>130-139</td>
</tr>
<tr>
<td>Stage 1 (mild)</td>
<td>140-159</td>
</tr>
<tr>
<td>Stage 2 (moderate)</td>
<td>160-179</td>
</tr>
<tr>
<td>Stage 3 (severe)</td>
<td>180-209</td>
</tr>
<tr>
<td>Stage 4 (very severe)</td>
<td>>209</td>
</tr>
</tbody>
</table>

Require three measurements (repeat visits)

BP lowest in the morning → ↑ during the day

Hypertension (HT)

Secondary HTs (10%)
- neurogenic HT caused by brain damage
- cortisol overproduction: hypophysis or adrenal gland tumor
- aldosterone overproduction: adrenal gland tumor hyperplasia
- renal artery stenosis or occlusion
- adrenal medulla tumor: pheochromocytoma

Primary (essential) HTs (90%)
- primary cause(s) unknown, possibly multi-factorial defects
 - genetics
 - smoking
 - stress
 - salt intake
 - obesity
 - age
 - alcohol
 - caffeine
 - others
Renal Stenosis

Primary cause of 2° HT

Decreased renal blood flow
- ↓ renal BP
- ↑ renin release
- ↑ aldosterone
- ↑ Na*, water retention
- ↑ systemic BP

Pheochromocytoma

Tumor: ↑ synthesis, ↑ release of NE & EPI into the circulation.
Result: ↑ BP, ↑ HR → hypertensive crisis
Treatment: - surgical removal for solid tumor
- α- / β-blocker ie. Labetatol
- α-blocker ie, phenoxybenzamine or phentolamine
- inhibit tyrosine hydroxylase ie. α-methyl-p-tyrosine
- β-blocker only after α-blockade

Rule of Ten
10% Pheochromocytomas are:

- Malignant
- Bilateral
- Extra-adrenal
- In children
- Familial
- Recur (within 5 to 10 years)
- Present after stroke
Exam Stress

Normal BP: 120 / 80 mmHg HR: 72 bpm

Before exam: 140 / 99 mmHg HR: 97 bpm

During exam: 179 / 149 mmHg HR: 110 bpm

End of exam: 111 / 74 mmHg HR: 76 bpm

BP Daily Fluctuation

Fluctuation Throughout a Day
(Case: Male, 35 years of age)

Systolic Blood Pressure
Diastolic Blood Pressure

6AM 12 6PM 12
Morning Afternoon Evening

Gets up Arrives at the company Discussion on the telephone Argument in a meeting Leaves the company Dinner Sleeps
Consequences of Sustained Hypertension

- failure in blood supply, renal failure (fibrinoid necrosis)
- loss of microcirculation
- aneurysms (rupture of blood vessels)
- myocardial and/or cerebral infarction
- increased risk of stroke
- increased risk of congestive heart failure

Health Consequences - Age

USA
45-60 million HT

\[\downarrow \text{Na}^+ \rightarrow \downarrow \text{rise rate} \]
Health Consequences – Cardiovascular Diseases

Health Consequences – Effective Treatment

Better understanding, better treatments, better results
Health Consequences – Risk Factors

↓ Risk factors → ↑ life expectancy

<table>
<thead>
<tr>
<th>Gains in Life Expectancy in Years for 35-Year-Old Individuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Reduce cholesterol level:</td>
</tr>
<tr>
<td>To 200 mg/dl if 200–239 mg/dl</td>
</tr>
<tr>
<td>To 200 mg/dl if ≥240–299 mg/dl</td>
</tr>
<tr>
<td>Reduce number of cigarettes smoked:</td>
</tr>
<tr>
<td>By 50%</td>
</tr>
<tr>
<td>Eliminate smoking</td>
</tr>
<tr>
<td>Reduce diastolic blood pressure:</td>
</tr>
<tr>
<td>To 88 mm Hg if 90–94 mm Hg</td>
</tr>
<tr>
<td>To 88 mm Hg if ≥95–104 mm Hg</td>
</tr>
<tr>
<td>Reduce weight:</td>
</tr>
<tr>
<td>To ideal if <30% over ideal</td>
</tr>
<tr>
<td>To ideal if ≥30% over ideal</td>
</tr>
</tbody>
</table>

Non Drug Treatment – Life Style Modification

For mild – moderate hypertension
Less side effects, cheap, improved lifestyle

- ↓ salt intake (Japan, ↑ intake → ↑BP)
 2.5gm/day (250meq) → 1gm/day (100meq)
- ↓ calorie intake, weight loss
- ↓ alcohol consumption (low dose ↓BP)
- ↑ physical activity
- ↓ stress factors
- ↓ smoking
- ↓ caffeine intake
New Blood Pressure Classification – JNC VII

<table>
<thead>
<tr>
<th>BP Classification</th>
<th>SBP mmHg</th>
<th>DBP mmHg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td><120</td>
<td>and 80</td>
</tr>
<tr>
<td>Pre-hypertension</td>
<td>120–139</td>
<td>or 80–89</td>
</tr>
<tr>
<td>Stage 1 Hypertension</td>
<td>140–159</td>
<td>or 90–99</td>
</tr>
<tr>
<td>Stage 2 Hypertension</td>
<td>>160</td>
<td>or >100</td>
</tr>
</tbody>
</table>

*Requires three measurements (repeat visits)
BP lowest in the morning → ↑during the day

Previous Classification of Hypertension (<2003)

<table>
<thead>
<tr>
<th>Systolic (mmHg)</th>
<th>Diastolic (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>normal</td>
<td><130</td>
</tr>
<tr>
<td>high normal</td>
<td>130-139</td>
</tr>
<tr>
<td>stage 1 (mild)</td>
<td>140-159</td>
</tr>
<tr>
<td>stage 2 (moderate)</td>
<td>160-179</td>
</tr>
<tr>
<td>stage 3 (severe)</td>
<td>180-209</td>
</tr>
<tr>
<td>stage 4 (very severe)</td>
<td>>209</td>
</tr>
</tbody>
</table>

For accurate determination: requires three measurements (repeat visits)
BP in general is lowest in the morning and increases during the day
Antihypertensive Agents (JNC VII, 2003)

1. Diuretics (1st)
 eg. hydrochlorothiazide
2. Renin / AgII (ACEI, ARBs)
 eg. captopril, losartan
3. Beta-antagonists
 eg. propranolol
4. Calcium-antagonists
 eg. nifedipine, verapamil
5. Alpha-antagonists
 eg. prazosin
6. Potassium sparing
 eg. spironolactone
7. Vasodilators
 eg. hydralazine, nitroprusside
8. Central acting alpha2-agonists:
 eg. clonidine, α-methyl dopa
9. Inhibit/reduce NE release
 eg. guanethidine, reserpine
10. Ganglionic blockers
 eg. mecamylamine

Main classes
(‘frontline agents’)

Beta-blockers
Diuretics (1st)
Calcium blockers
ACE inhibitors / ARBs

Sites of Action of Antihypertensive Agents
Antihypertensive Usage (ACC, 2001)

For untreated patients patients with BP of 140-159/90-99 mmHg and no other risk factors, indicate which class(es) of medications you would use:

<table>
<thead>
<tr>
<th>Medication</th>
<th>% Selecting each class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cardiologist</td>
</tr>
<tr>
<td>ACE inhibitor / ARB</td>
<td>71.6</td>
</tr>
<tr>
<td>Beta-blocker</td>
<td>57.9</td>
</tr>
<tr>
<td>Ca-blocker</td>
<td>51.5</td>
</tr>
<tr>
<td>Diuretics</td>
<td>48.8</td>
</tr>
<tr>
<td>Alpha-blocker</td>
<td>16.4</td>
</tr>
<tr>
<td>Other class</td>
<td>4.4</td>
</tr>
<tr>
<td>None (life-style)</td>
<td>8.4</td>
</tr>
</tbody>
</table>

Hypertension Is Largely Uncontrolled

Patients whose Hypertension is Controlled

<table>
<thead>
<tr>
<th>< 140/90 mmHg</th>
<th>< 160/95 mmHg</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA: JNC VI. Arch Intern Med 1997</td>
<td></td>
</tr>
<tr>
<td>Canada: Joffres et al. Am J Hypertens 1997</td>
<td></td>
</tr>
</tbody>
</table>

USA 27 |
Canada 16 |
England 6 |
France 24 |
Finland 20.5 |
Spain 20 |
Australia 19 |
Germany 22.5 |
Scotland 17.5 |
India 9 |

> 65 years

Diuretics

Frontline class

- ↓ BP by body depletion of Na⁺ and reducing blood volume (BV)
- High clinical value as antihypertensive
- Effective in older patients (less β-blockers, ACEI)
- Less effective in lean individuals
- Used also in treatment of Congestive Heart Failure
- Often used in combination with β-blockers or vasodilators
- Effective when GFR > 30ml/min (normal: 125ml/min)
Diuretics - Mechanism of action

Initial:
\[\downarrow \text{body Na}^+ \rightarrow \downarrow \text{BV} \rightarrow \downarrow \text{CO} \rightarrow \downarrow \text{BP} \left(\uparrow \text{TPR, reflex} \right) \]

Chronic:
\[\text{CO unchanged, } \downarrow \text{TPR, } \downarrow \text{NE} \rightarrow \downarrow \text{[Ca}^{++}\text{j]} \rightarrow \downarrow \text{vascular tone} \]

Direct vasodilation effect:
probably by opening K+ channels

Thiazides:
- eg. hydrochlorothiazide
- act on early distal tubule
- inhibit Na+ reabsorption

Loop Diuretics:
- eg. furosemide
- act on loop of Henle
- most potent

Nephron
Diuretics - Adverse effects

(Thiazide & Loop)

- potassium depletion → hypokalemia: hazardous in persons taking digitalis → arrhythmia
- magnesium depletion → arrhythmia
- photosensitivity
- impair glucose tolerance → diabetes
- increase serum lipids (usually returns to normal)
- increase serum uric acid concentration → gout

Potassium Sparing Diuretic Agents

- eg. Spironolactone
- aldosterone antagonist
- act on late distal tubule (collecting duct) to inhibit Na⁺ reabsorption and K⁺ secretion
- weak action
- hyperkalemia
- commonly used in combination therapy with other antihypertensive agents
Centrally acting sympatholytic agents

Useful class

- Act on central α_2-receptors \rightarrow ↓sympathetic outflow
- Good clinical value as antihypertensives.

 Clonidine, Guanfacine
 α-Methyldopa (converted to α-methyl-NE)
- do not interfere with exercise tolerance
- no metabolic effects

Adverse effects:
- sedation, mental depression, lactation, dry mouth
- withdrawal effect: rebound HT (can be very serious)

Ganglion-Blocking Agents

- block ganglionic nicotinic receptors (SNS, PNS)
- first effective antihypertensive class
- currently not used for chronic HT

Adverse effects (significant):
- Sympathoplegia:
 - excessive orthostatic hypotension, sexual dysfunction
- Parasympathoplegia:
 - constipation, ↓urine, blurred vision, dry mouth

- Trimethaphan
 - i.v. injection, rapid, short half life (precise titration)
 - hypertensive crisis (CNS-mediated), controlled hypotension during surgery

- Mecamylamine: effective orally
Neurons of the ANS

- Venous return falls
- Blood pressure falls

Postural (Orthostatic) Hypotension

- Sympathetic activity increases
 - Constriction of great veins
 - Constriction of arteries (↑ TPR)
 - Increase in heart rate

BP (mmHg)

<table>
<thead>
<tr>
<th>No reflex</th>
<th>Reflex</th>
</tr>
</thead>
<tbody>
<tr>
<td>95 100 95</td>
<td>100 100 195 105</td>
</tr>
</tbody>
</table>

reflex mediated
Adrenergic Neuron-Blocking Agents

Clinical value as antihypertensive is low

Guanethidine (last resort), bretylium
- inhibits release of NE from nerve terminals
- gradual depletion of NE stores
- neuronal uptake (uptake 1) is essential for action
- tricyclic antidepressants, cocaine decrease effectiveness

Adverse effects:
- marked postural hypotension
- diarrhea, impaired ejaculation

Reserpine

Clinical value as antihypertensive is low

Reserpine (last resort)
- inhibit uptake of NE into storage vesicle (also DA, 5-HT)
- leads to depletion of transmitter stores (peripheral & CNS action)

Adverse effects:
- sedation, mental depression, Parkinsonism syndrome
- increases gastric acid secretion → ulcer
Alpha-Adrenoceptor Antagonists

- Use low, but constant

Phenoxybenzamine (irreversible α_1-receptor blocker)
- reflex tachycardia effect
- therapeutic value in pheochromocytoma, HT crisis

Prazosin (selective α_1-receptor blocker)
- selective alpha1-receptor blocker in arterioles and venules (dilates both resistance and capacitance vessels)
- does not produce reflex tachycardia
- also used for benign prostrate hypertrophy

Phentolamine (non-selective α-receptor blocker)
- reflex tachycardia effect
- diagnostic and therapeutic value in pheochromocytoma

Adverse effects:
- postural hypotension
- salt and fluid retention
- beneficiary effect on plasma lipids

Benign Prostrate Hypertrophy (BPH)

- Enlarged prostrate leads to difficulty in urination
- Alpha-receptor blocker (ie, Prazosin) cause prostrate relaxation
- Relaxed prostrate improves urination
Beta-Adrenoceptor Antagonists

Frontline as antihypertensive agents

Mechanism of action unknown
- central effect: inhibition of central sympathetic tone
 BUT: beta-blockers (like Nadolol, Sotalol don't cross CNS)
- inhibition of renin secretion (beta1-receptors)
 BUT: beta-blockers ↓ BP when plasma renin activity low
 beta-blockers (like Pindolol) don't ↓ plasma renin activity
- effect on cardiac beta1-receptors: ↓ HR → ↓ CO → ↓ BP
 BUT: with continued treatment CO unchanged, ↓ TPR → ↓ BP

Other Clinical Uses:
- Angina - Arrhythmias
- Congestive heart failure (CHF) - Glaucoma (Timolol)
- Panic stress - Migraine
- Hyperthyroidism (propranolol) - Tremor

Beta-Adrenergic Receptor Antagonists

Clinically a more useful class of drugs than α-adrenoceptor antagonists.

β-Adrenoceptor antagonists vary in respect to:

- Selectivity: Relative affinity for beta1- and beta2-adrenoceptors
 - propranolol (β1, β2) vs atenolol (β1)
- Intrinsic β-activity (ISA): also act as agonists at β-adrenoceptors
 - propranolol (no) vs pindolol (yes)
- Local anaesthetic activity (LA-action): their ability to stabilize excitable membranes
 - propranolol (yes) vs atenolol (no)
- Lipid solubility: propranolol (high) vs atenolol (low)
Propranolol - Hypertension

Propranolol
- Non-selective
- No partial agonist (no ISA)
- Membrane stabilization (no LA-action)
- Less effective in smokers, Afro-Americans, or elderly

Beta-Adrenoceptor Blocking Agents (-olol)
(A-M β1-selective)

Properties of several beta-receptor blocking drugs

<table>
<thead>
<tr>
<th>Drug</th>
<th>Selectivity</th>
<th>Partial Agonist Activity</th>
<th>Local Anesthetic Action</th>
<th>Lipid Solubility</th>
<th>Elimination Half-Life</th>
<th>Approximate Bioavailability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acebutolol</td>
<td>β1</td>
<td>Yes</td>
<td>Yes</td>
<td>Low</td>
<td>3-4 hours</td>
<td>50%</td>
</tr>
<tr>
<td>Atenolol</td>
<td>β1</td>
<td>No</td>
<td>No</td>
<td>Low</td>
<td>6-9 hours</td>
<td>40%</td>
</tr>
<tr>
<td>Betaxolol</td>
<td>β1</td>
<td>No</td>
<td>Slight</td>
<td>Low</td>
<td>14-22 hours</td>
<td>90%</td>
</tr>
<tr>
<td>Bisoprolol</td>
<td>β1</td>
<td>No</td>
<td>No</td>
<td>Low</td>
<td>9-12 hours</td>
<td>80%</td>
</tr>
<tr>
<td>Carvedilol</td>
<td>None</td>
<td>Yes</td>
<td>No</td>
<td>Low</td>
<td>6 hours</td>
<td>85%</td>
</tr>
<tr>
<td>Celiprolol</td>
<td>β1</td>
<td>Yes¹</td>
<td>No</td>
<td>Low</td>
<td>4-5 hours</td>
<td>70%</td>
</tr>
<tr>
<td>Esmolol</td>
<td>β1</td>
<td>No</td>
<td>No</td>
<td>Low</td>
<td>10 minutes</td>
<td>...</td>
</tr>
<tr>
<td>Labetalol</td>
<td>None</td>
<td>Yes¹</td>
<td>Yes</td>
<td>Moderate</td>
<td>5 hours</td>
<td>80%</td>
</tr>
<tr>
<td>Metoprolol</td>
<td>β1</td>
<td>No</td>
<td>Yes</td>
<td>Moderate</td>
<td>3-4 hours</td>
<td>50%</td>
</tr>
<tr>
<td>Nadolol</td>
<td>None</td>
<td>No</td>
<td>No</td>
<td>Low</td>
<td>14-24 hours</td>
<td>33%</td>
</tr>
<tr>
<td>Peroxolol</td>
<td>None</td>
<td>Yes</td>
<td>No</td>
<td>High</td>
<td>5 hours</td>
<td>>90%</td>
</tr>
<tr>
<td>Pindolol</td>
<td>None</td>
<td>Yes</td>
<td>Yes</td>
<td>Moderate</td>
<td>3-4 hours</td>
<td>90%</td>
</tr>
<tr>
<td>Propranolol</td>
<td>None</td>
<td>No</td>
<td>Yes</td>
<td>Moderate</td>
<td>3-4 hours</td>
<td>30%</td>
</tr>
<tr>
<td>Sotalol</td>
<td>None</td>
<td>No</td>
<td>No</td>
<td>Low</td>
<td>12 hours</td>
<td>90%</td>
</tr>
<tr>
<td>Timolol</td>
<td>None</td>
<td>No</td>
<td>No</td>
<td>Moderate</td>
<td>4-5 hours</td>
<td>50%</td>
</tr>
</tbody>
</table>

¹Partial agonist effects at β1 receptors. *Labetalol also causes α1-selective blockade. Bioavailability is dose-dependent.
Mixed Alpha- and β-Receptor Blockers

• **Labetalol**
 - hypertensive crisis, chronic hypertension, CHF
 - competitive antagonist at both α- & β-ARs
 - $\beta_1 = \beta_2$ activity $>\alpha$-activity (3:1)
 - HR & CO unchanged; \downarrow TPR \rightarrow \downarrow BP
 - some intrinsic β-adrenoceptor activity (ISA)

• **Carvedilol**
 - newest agent
 - chronic hypertension, Congestive heart failure (CHF)

β-Blockers: Untoward Effects, Cautions

• **Supersensitivity**: Rebound effect with β-blockers, less with β-blockers with partial agonist activity (ie. pindolol). Gradual withdrawal

• **Asthma**: Blockade of pulmonary β_2-receptors leads to increase in airway resistance. β_1-selective agents preferred

• **Diabetes**: Compensatory hyperglycemic effect of EPI in insulin-induced hypoglycemia is removed by block of β_2-ARs in liver. β_1-selective agents preferred

• **Raynaud D**: Decreased peripheral circulation

• **CNS**: nightmares, mental depression, insomnia

• **Elderly**: Effectiveness is decreased, more CNS effects (ie. depression)
β-Blockers: Heart Failure

- **Old view (before 2002)**
 Contraindicated: β-blockers can precipitate latent heart failure by removing compensatory increase in sympathetic effects on heart. Pindolol has less of this effect due to intrinsic activity.

- **New view**
 May be used for CHF with caution. Not suitable in unstable heart failure, or evidence of bronchospasm, fluid overload, significant bradycardia (decreased cardiac reserve) or depression.

Beta-Blockers in CHF: 2002 Guideline

![Beta-Blockers in CHF: 2002 Guideline](image-url)
MERIT-HF: Use of Metoprolol in CHF

- Metoprolol (n=1990) vs Placebo (n=2001)
- β_1-selective, no ISA, LA-action
- USA & 13 European countries
- All received conventional medication
- Monitored 1 – 1.5 years

- Mortality ↓34%
- Hospitalization ↓29%
- Felt better ↑25%

Beta-Blockers - Mechanism of Action

Diagram showing the mechanism of action of beta-blockers, including:
- Decrease in CNS sympathetic outflow
- Decrease in blood pressure
- Decrease in cardiac output
- Decrease in Peripheral resistance
- Decrease in Angiotensin II
- Decrease in Aldosterone
- Decrease in Sodium, water retention
- Increase in Blood volume
Vasodilators

- relax smooth muscle of arterioles → ↓ TPR
- high clinical value (in combinations and hypertensive emergencies)

Hydralazine
- EDRF / Nitric oxide (NO) / cGMP involvement
- dilate arterioles but not veins
- ↓ TPR → ↓BP → reflex tachycardia

Adverse effects:
- reflectory sympathetic activation
- headache, nausea, sweating, flushing
- palpitations, ↑ HR → angina
- lupus reaction (mainly in slow acetylators)

Actions of Vasodilators

<table>
<thead>
<tr>
<th>Ca++ Antagonists</th>
<th>Open K+ Channels</th>
<th>Nitric Oxide (NO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verapamil</td>
<td>Minoxidil</td>
<td>Hydralazine</td>
</tr>
<tr>
<td>Nifedipine</td>
<td>Diazoxide</td>
<td>Nitroprusside</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nitrates</td>
</tr>
</tbody>
</table>

Diagram showing the actions of vasodilators, including Ca++ antagonists, open K+ channels, and nitric oxide (NO) pathways.
Vasodilators - Minoxidil

Minoxidil (Rogaine)
- opens K⁺-channels in smooth muscle membranes
- stabilization of membrane at its resting potential, contraction less likely
- dilates arterioles but not veins

Adverse effects:
- reflex sympathetic stimulation
- fluid retention (value in combination therapy)
- hypertrichosis (topical application as Rogaine)

Vasodilators – Sodium Nitroprusside

Sodium Nitroprusside
- activation of guanylyl cyclase (direct and/or via release of NO
- intracellular ↑ cGMP → relaxation of vascular smooth muscle
- dilates both arterial (↓ TPR) and venous vessels
- venous return to the heart is decreased, reflex tachycardia
- hypertensive emergency, acute CHF
- i.v. administration, never oral → ↑ toxicity

Adverse effects:
- cyanide liberation → cyanide toxicity
- thiocyanate elimination by the kidney (high dose / long infusion, insufficient sulfur donor, defect in cyanide metabolism)
- metabolic acidosis, arrhythmias, severe hypotension
- methemoglobinemia (non-reversible O₂ binding)
Vasodilators - Diazoxide

Diazoxide
- opens K⁺-channels - stabilizes membrane potential
- dilates arteriolar vessels
- i.v. administration
- ↓TPR → reflex ↑HR → ↑CO
- inhibits insulin release (via opening K⁺-channels on beta cell membrane)
- similar structure as thiazide diuretics but no diuretic effect

Calcium Channel Blockers

Frontline class
- inhibition of calcium influx into arterial smooth muscle cells
- dilate arterioles → ↓TPR → ↓BP
- different effect on the heart and vessels
- contraindicated in Congestive heart failure (CHF)

Nifedipine:
- mainly arteriole vasodilation, little direct cardiac effect
- may cause reflex tachycardia, flushing, peripheral edema

Verapamil:
- some cardiac slowing, constipation
- caution in digitalized patients (↑digoxin levels)

Diltiazem:
- similar to Verapamil / Nifedipine (less)
- both cardiac and vascular actions
Calcium blockers - Gingival Hyperplasia

- Calcium blockers – especially nifedipine (10%)
- Phenytoin (Dilantin) – for seizures (40%)
- Cyclosporine – immunosuppressant (30%)

Action of Vasodilators

eg. Calcium blockers, Hydralazine, Minoxidil

Primary and secondary effects of vasodilator therapy in essential hypertension and the manner by which diuretic and beta-adrenergic blocker therapy can overcome the undesirable secondary effects. (From Koch-Weser J. Vasodilator drugs in the treatment of hypertension. Arch Intern Med 1974;133:1017-1027, copyright 1974, American Medical Association.)
Renin-Angiotensin-Aldosterone System

Frontline class of antihypertensive agents
- inhibit action or production of angiotensin II
- AgII is a potent vasoconstrictor peptide
- decrease aldosterone production
- less effective in elderly, Afro-Americans

ACE is a peptidyl dipeptidase:
- converts AgI → active AgII (major effect)
- degrades bradykinin (a potent vasodilator)

actions of Angiotension converting enzyme

Angiotensinogen

Angiotensin II

Vasoconstriction
- Increased TPR
- Increased BP

Aldosterone secretion
- Increased NA & H₂O retention

Increased PG synthesis

Kininogen

Bradykinin

Inactive

Vasodilation
- Decreased TPR
- Decrease BP
Angiotensin-Converting Enzyme (ACE) Inhibitors

Captopril: - orally active
Enalapril: - for i.v. use, hypertensive emergency
Benazepril, Fosinopril, Ramipril: - longer acting agents

↓ TPR, CO unchanged, HR unchanged

- no reflex ↑ HR, probably due to resetting (↓) of baroreceptor reflex sensitivity
- improves intrarenal hemodynamics
- reverse cardiac hypertrophy seen in HT
- less effective with age and in Afro-Americans
- need to take before or after meals

Saralazin, Lorsarton (ARBs, receptor antagonists)
- competitive inhibitor of AgII at its receptor
- has a weak agonist activity (depends on circulating AgII level)
- diagnostic value (AgII dependency of HT)

ACE Inhibitors & ARBs - Adverse effects

- severe hypotension in hypovolemic patients, bilateral renal artery stenosis
- hyperkalemia (↑[K⁺])
- dry cough (ACEI), dry mouth, skin rushes, glossitis
- altered sense of taste due to loss of Zinc (10-20%)
- tetrogenic, contraindicated during the second and third trimester of pregnancy
- drug interactions with potassium-sparing diuretics, NSAID
ACEI - Glossitis

- Less than 5%
- Dry mouth
- Glossitis
- Oral ulceration (Stevens-Johnson Syndrome)
- Oral bleeding

Treatment of Hypertension (> 139/89mmHg)

General considerations

Secondary HT (10%)
- can be cured by surgical procedures (early diagnosis of cause)
- renal artery stenosis, pheochromocytoma

Primary (essential) HT (90%)
- is a lifelong disease, long-term control & treatment
- HT often insidious, causes no symptoms
- conversely treatment can produce even serious

Adverse effects:
- patients compliance is very important
- treat the patient and not 'just' their BP (quality of life)
Treatment strategy

Initial step: Nonpharmacological
- sodium intake, weight loss, physical activity, alcohol, stress,
- overview of medication, other risk factors

IF NOT ENOUGH OR INITIALLY HIGHER STAGE OF HT

Drug therapy:
- continue or start with drug therapy (frontline agents)
- choose the proper medication?
- \(\beta\)-blockers efficacy may decrease as age increases
- \(\beta\)-blockers are less effective in smokers
- blacks respond less to \(\beta\)-blockers and ACE inhibitors
- \(\beta\)-blockers and ACE inhibitors better in ↑ plasma renin
- use long-lasting drugs (↑compliance)

Start with monotherapy:
- if necessary add second, or third agent (from different class)

Good Combotherapy: vasodilator with either \(\beta\)-blocker or diuretic

Antihypertensive Market

U.S. ANTIHYPERTENSIVE MARKET TOTAL Rx’S

![Graph showing changes in antihypertensive market from 1986 to 1992](image-url)
Hypertension Treatment Chart

CONCOMITANT DISEASE

- ANGINA PECTORIS
- DIABETES (ORIGIN INDEPENDENT)
- HYPERLIPIDEMIA
- CONGESTIVE HEART FAILURE
- PREVIOUS MYOCARDIAL INFARCTION
- CHRONIC RENAL DISEASE
- ASTHMA, CHRONIC RESPIRATORY DISEASE

DRUGS COMMONLY USED IN TREATING HYPERTENSION

- Diuretics
- Beta-Blockers
- ACE Inhibitors
- CCB Channel Blockers

KEY:
- Drug class
- Commonly used drugs
- Alternate drugs

*Based on benefits from outcome studies or existing guidelines, the compelling indication is managed in parallel with the BP. JNC 7. JAMA. 2003;289:2560-2672.

JNC 7: HT - Compelling Indications for Individual Drug Classes

<table>
<thead>
<tr>
<th>High-Risk Condition With Compelling Indication*</th>
<th>Recommended Drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diuretic</td>
</tr>
<tr>
<td>Heart failure</td>
<td>x</td>
</tr>
<tr>
<td>Post-MI</td>
<td>x</td>
</tr>
<tr>
<td>High CAD risk</td>
<td>x</td>
</tr>
<tr>
<td>Diabetes</td>
<td>x</td>
</tr>
<tr>
<td>Kidney disease</td>
<td>x</td>
</tr>
<tr>
<td>Stroke prevention</td>
<td>x</td>
</tr>
</tbody>
</table>

MI = myocardial infarction; CAD = coronary artery disease; Aldo Ant = aldosterone antagonist.

*Based on benefits from outcome studies or existing guidelines, the compelling indication is managed in parallel with the BP. JNC 7. JAMA. 2003;289:2560-2672.