Pharmacology of the Neuromuscular Junction (NMJ)

Edward JN Ishac, Ph.D.

Smith Building, Room 742
eishac@vcu.edu
8-2127 8-2126

Department of Pharmacology and Toxicology
Medical College of Virginia
Campus of Virginia Commonwealth University
Richmond, Virginia, USA

Autonomic Nervous System

NERVOUS SYSTEM

- Central Nervous System
- Afferent Division
- Somatic Voluntary
- Sympathetic Nervous System
- Parasympathetic Nervous System

Peripheral Nervous System

Efferent Division

Autonomic Nervous System

- Autonomic Involuntary
- Visceral Vegetative

FUNCTIONS CONTROLLED

- Respiration
- Circulation
- Body Temperature
- Metabolism
- Sweating
- Secretions

PARASYMPATHETIC
- Cranial N. III, VII, IX, X
- Sacral S2-5
- "Feeding & Breeding"
- IBP, IHR, TGT

SYMPATHETIC
- Thoracolumbar T1-12, L1-3
- "Flight or Fight"
- IBP, THR, IGT

PARASYMPATHETIC
- Craniosacral

CENTRAL INVOLVEMENT
- Hypothalamus - Integration, body temp & water balance
- Medulla - BP, respiration
- Cerebral cortex - somatic NS & ANS integration
Neurons of the ANS

- Medulla
- ACh N
- ACh M
- Cardiac and smooth muscle, gland cells, nerve terminals
- Sweat glands
- NE αβ
- Cardiac and smooth muscle, gland cells, nerve terminals
- Renal vascular smooth muscle
- Adrenal medulla
- Epi, NE
- ACh N
- Skeletal muscle
- Somatic

Neuromuscular Junction

FIG. 20 The Motor Endplate

- MYELIN SHEATH
- AXON
- NODE OF RANVIER
- TERMINAL MEMBRANE
- SUBNEURAL SPACE
- POSTJUNCTIONAL MEMBRANE
- SCHWANN CELL
- MITOCHONDRIA
- MYOFIBRILS
- NUCLEUS
- SARCOPLASMA
- Transverse Tubular System (TTS)

- NERVE ACTION POTENTIAL (AP)
- ACETYLCHOLINE RELEASE
- DEPOLARIZATION (EPP) (INCREASED PERMEABILITY TO Na⁺ AND K⁺)
- MUSCLE ACTION POTENTIAL (MAP)
- SPREAD OF EXCITATION IN MUSCLE VIA TTS
- MUSCLE CONTRACTION
Myasthenia gravis
Autoimmune disease

1:10,000 (250,000 USA)
• antibodies to NMJ nicotinic receptors leads to degradation
• simplified synaptic folds
• normal nerve terminal and transmitter
• wider synaptic junction

Diagnosis: Edrophonium (Tensilon, short acting) is used for diagnosis and determination of maintenance dose

Treatment: Neostigmine has direct (stimulates receptor) and indirect actions (inhibition of AchE). No CNS activity.

NMJ Nicotinic Receptor

Ion Channel
• pentamer
• Na⁺ in
• K⁺ out

Infant: α₂βδε
Adult: α₂βδγ
NMJ Blocking Agents

Paralysis: small rapidly moving muscles (eyes, fingers), then limbs, last is respiratory muscles (recovery in reverse order)

- **Competitive (non-depolarizing) agents (curare)**
 - compete with Ach for binding to receptor
 - flaccid, relaxed paralysis
 - non-NMJ effects: ganglia, muscarinic blocking, histamine release
 - NMJ block can be reversed by AchE inhibitors

- **Non-competitive (depolarizing) agents (succinylcholine)**
 Phase 1 block:
 - membrane depolarization
 - transient fasciculations followed by paralysis
 Phase 2 block:
 - desensitization
 - membrane repolarizes, hyposensitive to Ach
 - NMJ block not reversed by AchE inhibitors
Competitive (nondepolarizing) Blocking Agents - Curare

- **Tubocurarine, dimethyltubocaraine (metocarine)**
 - no effect on nerve transmission
 - muscle can still be stimulated
 - 5-10mg (iv) produces flaccid paralysis
 - 10-20mg (iv) can produce apnea, not active orally
 - can cause histamine release (mast cells)
 - can block ganglionic receptors [higher concentrations]

A Amazon hunter tips his darts with the poison curare

Competitive (nondepolarizing) Blocking Agents - Others

- **Pancuronium**
 - more potent than tubocurarine (x5)
 - reduced histamine release than curare
 - lack of ganglionic blockade

- **Gallamine**
 - also some muscarinic block

- **Mivacurium**
 - fast onset (2-4min), short acting (12-18min), hydrolysis by AchE, some histamine release

- **Rocuronium**
 - fast onset (1-2min), 30-40min duration, hypersensitivity

- **Atracurium**
 - hydrolysis by AchE
Adverse Effects and Treatment

- **Adverse effects:**
 - apnea (loss of respiration)
 - ganglionic blockade (tubocurarine)
 - histamine release (tubocurarine)
 - muscarinic block (gallamine)
 - hypotension (histamine release & ganglionic block)
 - no significant CNS effects

- **Treatment of toxicity:**
 - Acetylcholinesterase inhibitors ie. neostigmine

Depolarizing NMJ Blocking Agents

- **Succinylcholine** (decamethonium, not used)
 - Phase 1: depolarization, Phase 2: desensitization
 - brief duration (5-10min)
 - metabolized by pseudocholinesterase
 - 'atypical' pseudo-AchE (1:10,000, long-lasting)
 - less histamine release than curare
 - less effect at ganglia than curare
 - not reversed by AchE inhibitors
Succinylcholine: Adverse effects & treatment

- **Toxicity:**
 - similar to competitive blockers with less effects at ganglia or histamine release

- **Treatment:**
 - Artificial respiration
 - use of AChE inhibitors will not reverse NMJ blockade

- **Adverse reactions:**
 - ‘Atypical’ psuedo-AchE (1:10,000, prolonged apnea, 2-3hr)
 - Hyperkalemia (esp. burn, trauma patients, response delayed 2-7 days)
 - Malignant hyperthemia (esp. with halothane)

Hyperkalemia

- burn & trauma
- usually small ↑K+
- cardiac arrest
- support: dialysis glucose / insulin

![Hyperkalemia Graph](image)
Malignant Hyperthermia

- more likely with halothane
- 60% mortality
- \uparrow Ca$^{++} \rightarrow \uparrow$ body temp
- tachycardia
- dysrhythmia
- \uparrow HR, muscle rigidity

Treatment:
- Dantrolene
- drug of choice
- \downarrow Ca$^{++}$ release

Clinical Uses of NMJ Blocking Agents

- **Muscle relaxation in surgery**
 - decreases depth of anesthesia
- **Orthopedics**
 - dislocations, alignment of fractures
- **Facilitate intubations**
 - in mechanical artificial ventilation
- **Facilitate internal examinations**
 - laryngoscopy, bronchoscopy, esophagoscopy
- **Prevent trauma**
 - during electroshock therapy
- **Diagnostic**
 - tubocurarine (Myasthenia gravis), not commonly used
 - not recommended, Edrophonium (Tensolin) better
NMJ Agents: Drug Interactions

Synergism with certain agents → ↓ dose

Calcium channel blockers ie. verapamil
- ↓ Ach release

Aminoglycoside antibiotic ie. neomycin
- compete with Ca++
- ↓ Ach release & stabilize membrane

Certain general anesthetic ie. halothane
- stabilize membrane

Direct Acting Neuromuscular Relaxant

• **Dantrolene (Dantrium)**
 - inhibits calcium release
 - significant liver toxicity
 - muscle weakness

• **Clinical uses:**
 - stroke
 - cerebral palsy
 - malignant hyperthermia (DOC)
 - multiple sclerosis

• **Other agents**
 - Benzodiazepines
Future Directions

1. Sugammadex (ORG 25969, Selective Relaxant Binding Agent (SRBD), Phase III clinical trials):
 - forms tight complex with steroidal NMBs, binds to drug, no effect on acetylcholinesterase or any receptor system.
 Rocuronium > Vecuronium >> Pancuronium
 - ineffective against succinylcholine, atracurium, mivacurium

2. Gantacurium (Non-depolarizing, competitive NMB, Phase II clinical trials)
 - rapid onset (1-2 min), short duration (10-15 min)
 - metabolism by ester hydrolysis and cysteine adduction

Sugammadex: Chemical Structure

- ORG 25969
- note polar, hydroxyl groups
- hydrophobic cavity traps drug-results in formation of a water soluble guest host complex
- “Encapsulates” rocuronium molecule
- Allows “Rapid Reversal”
- Phase III Clinical trials
- Renal elimination
- Excreted unchanged in first 8 hours

Rocuronium
Sugammadex: Human trial

Baseline - Non-Paralyzed

![Graph showing the effect of sugammadex on twitch percentage over time.](image)

deBoer, HD, et al. Anesthesiology, 104:718-723 2006

Recovery (Succinylcholine vs Rocuronium)

If you must reestablish nm blockade….
And you used sugammadex….
What should you use???

Ineffective against succinylcholine and NMBs (mivacurium, atracurium, and cisatracurium)

Naguib M., Anesthesia & Analgesia, Vol 104, No 3, March 2007
Gantacurium (GW 280430 A)

- By GSK, similar to Mivacurium
- ED 95 = 0.18 mg/kg
- Onset 1.2 - 1.8 min & duration of 15 min
- Higher doses cause histamine release without change in onset time
- Alkaline hydrolysis in plasma + spontaneous formation of cysteine adducts
- Very little genetic variability

Comparison of Competitive (d-Tubocurarine) and Non-competitive, depolarizing (Succinylcholine) Agents

<table>
<thead>
<tr>
<th></th>
<th>Tubocurarine</th>
<th>Succinylcholine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Phase I</td>
<td>Phase II</td>
</tr>
<tr>
<td>Addition of succinylcholine</td>
<td>Antagonistic</td>
<td>Additive</td>
</tr>
<tr>
<td>Addition of tubocurarine</td>
<td>Additive</td>
<td>Antagonistic</td>
</tr>
<tr>
<td>Effect of neostigmine</td>
<td>Reverse</td>
<td>Augmented</td>
</tr>
<tr>
<td>Initial effect on striated muscle</td>
<td>None</td>
<td>Fasciculations</td>
</tr>
<tr>
<td>Response to tetanic stimulation</td>
<td>Unsustained</td>
<td>Sustained</td>
</tr>
</tbody>
</table>
NMJ Blocking Agents – Other Actions

<table>
<thead>
<tr>
<th>Drug</th>
<th>Ganglia</th>
<th>Muscarinic Receptors</th>
<th>Histamine Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>Succinylcholine</td>
<td>Stimulates</td>
<td>Stimulates</td>
<td>Slight</td>
</tr>
<tr>
<td>Tubocurarine</td>
<td>Blocks</td>
<td>None</td>
<td>Moderate</td>
</tr>
<tr>
<td>Metaocurine</td>
<td>Blocks weakly</td>
<td>None</td>
<td>Slight</td>
</tr>
<tr>
<td>Gallamine</td>
<td>None</td>
<td>Blocks strongly</td>
<td>None</td>
</tr>
<tr>
<td>Pancuronium</td>
<td>None</td>
<td>Blocks weakly</td>
<td>None</td>
</tr>
<tr>
<td>Vecuronium</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Atracurium</td>
<td>None</td>
<td>None</td>
<td>Slight</td>
</tr>
<tr>
<td>Rocuronium</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mivacurium</td>
<td>None</td>
<td>None</td>
<td>Slight</td>
</tr>
</tbody>
</table>

Onset, Duration and Elimination of Neuromuscular Blocking Drugs

<table>
<thead>
<tr>
<th>Drug</th>
<th>Onset (min)</th>
<th>Duration (min)</th>
<th>Mode of elimination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Succinylcholine</td>
<td>1-2</td>
<td>6-8</td>
<td>Hydrolysis by AchE</td>
</tr>
<tr>
<td>Tubocurarine</td>
<td>4-6</td>
<td>80-120</td>
<td>Kidney, liver</td>
</tr>
<tr>
<td>Metaocurine</td>
<td>4-6</td>
<td>80-120</td>
<td>Kidney</td>
</tr>
<tr>
<td>Gallamine</td>
<td>4-6</td>
<td>80-120</td>
<td>Kidney</td>
</tr>
<tr>
<td>Pancuronium</td>
<td>4-6</td>
<td>80-120</td>
<td>Kidney, liver</td>
</tr>
<tr>
<td>Vecuronium</td>
<td>2-4</td>
<td>30-40</td>
<td>Kidney, liver</td>
</tr>
<tr>
<td>Atracurium</td>
<td>2-4</td>
<td>30-40</td>
<td>Hydrolysis by AchE</td>
</tr>
<tr>
<td>Rocuronium</td>
<td>1-2</td>
<td>30-40</td>
<td>Liver</td>
</tr>
<tr>
<td>Pipecuronium</td>
<td>2-4</td>
<td>80-100</td>
<td>Kidney, liver</td>
</tr>
<tr>
<td>Mivacurium</td>
<td>2-4</td>
<td>12-18</td>
<td>Hydrolysis by AChE</td>
</tr>
</tbody>
</table>
Succinylcholine

"Boy! That new sleeping drug really works fast!"
Rapid onset and short duration, this sucks!
What are we going to name it?

Neuromuscular Blockade Variables

Time to 25% recovery
Onset
Recovery Index

Time to 95% recovery