Pharmacology of the Cardiovascular System

Edward JN Ishac, Ph.D.
Professor

Smith Building, Room 742
eishac@vcu.edu
828-2127

Department of Pharmacology and Toxicology
Medical College of Virginia
Campus of Virginia Commonwealth University
Richmond, Virginia, USA

Main classes (‘frontline agents’)

Diuretics (1st of equals)
Beta-blockers
Calcium blockers
ACE inhibitors / ARBs

 Sites of Action of Antihypertensive Agents

Figure 11-3. Sites of action of the major classes of antihypertensive drugs.
Baroreceptor Reflex Arc

Oppose direct changes in BP, not HR, not pulse pressure

Increase stretch → increase firing of baroreceptors

Cardiovascular - 1

Blood Pressure = Cardiac Output X TPR
Cardiac Output = Heart rate X Stroke volume

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Response</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha₁</td>
<td>vasoconstriction</td>
<td>↑ TPR ↑ BP</td>
</tr>
<tr>
<td>beta₁</td>
<td>↑ heart rate</td>
<td>↑ CO ↑ BP</td>
</tr>
<tr>
<td>beta₂ **</td>
<td>vasodilation</td>
<td>↓ TPR ↓ BP</td>
</tr>
<tr>
<td>M₂ (vagus)</td>
<td>↓ heart rate</td>
<td>↓ CO ↓ BP</td>
</tr>
<tr>
<td>M (vascular) **</td>
<td>vasodilation</td>
<td>↓ TPR ↓ BP</td>
</tr>
</tbody>
</table>

** not innervated
Cardiovascular - 2

<table>
<thead>
<tr>
<th></th>
<th>Resting</th>
<th>After ↑BP</th>
<th>After ↓BP</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha₁</td>
<td>++++</td>
<td>o</td>
<td>++++++</td>
</tr>
<tr>
<td>beta₁</td>
<td>+</td>
<td>o</td>
<td>+</td>
</tr>
<tr>
<td>beta₂</td>
<td>+</td>
<td>++</td>
<td>o</td>
</tr>
<tr>
<td>vagus</td>
<td>++</td>
<td>+++</td>
<td>o</td>
</tr>
</tbody>
</table>

Note: Athletic individual has low HR (high vagal tone)
Lance Armstrong resting HR 32 bpm

Neurons of the ANS

- **Parasympathetic**
 - Cardiac and smooth muscle, gland cells, nerve terminals
 - Sweat glands

- **Sympathetic**
 - Cardiac and smooth muscle, gland cells, nerve terminals
 - Renal vascular smooth muscle
 - Skeletal muscle

- **Somatic**
Cardiovascular Actions – Low dose

α₁ β₁ (β₂) β₁ β₂ α₁ β₁ β₂

Blood Pressure = Cardiac Output X TPR
Cardiac Output = Heart rate X Stroke volume

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Response</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha₁</td>
<td>vasoconstriction</td>
<td>↑ TPR</td>
</tr>
<tr>
<td>beta₁</td>
<td>↑ heart rate</td>
<td>↑ CO</td>
</tr>
<tr>
<td>beta₂ **</td>
<td>vasodilation</td>
<td>↓ TPR</td>
</tr>
<tr>
<td>M₂ (vagus)</td>
<td>↓ heart rate</td>
<td>↓ CO</td>
</tr>
<tr>
<td>M (vascular) **</td>
<td>vasodilation</td>
<td>↓ TPR</td>
</tr>
</tbody>
</table>

** not innervated
Cardiovascular – High dose – PE, EPI, ISO

FIG. 8D

- **Phenylephrine**
 - α-agonist
- **Epinephrine**
 - α- and β-agonist
- **Isoproterenol**
 - β-agonist

Phenylephrine α-agonist, Epinephrine α-β-agonist, Isoproterenol β-agonist

Cardiovascular Actions – Epinephrine Reversal

FIG. 8E

- **Phentolamine**
 - α- antagonist
 - ↑ PP, ↓ BP, ↑ HR (reflex)
- **Epinephrine before Phentolamine**
- **Epinephrine after Phentolamine**

Effects of intravenous phentolamine, a α-blocker, on blood pressure and heart rate in response to a α-agonist (phenylephrine) or a α-β-agonist (epinephrine), showing a reflex increase in heart rate due to alpha-blockade.

In the presence of phentolamine, epinephrine now causes ↓ BP.
Cardiovascular Summary

http://www2.courses.vcu.edu/ptxed/ptx/cv_ans.htm

α1 ↑TPR ↑BP
β1 ↑HR ↑BP
β2 ** ↓TPR ↓BP
M2 ↓HR ↓BP
M ** ↓TPR ↓BP

Key Diagrams
NE, PE, EPI, ISO
α-blocker, β-blocker

NE + atropine
NE + α-blocker
NE + β-blocker
PE + atropine
EPI + α-blocker
EPI + β-blocker

Postural (Orthostatic) Hypotension

• Venous return falls, blood pressure falls (>20mmHg SBP, >10mmHg DBP)

 • Sympathetic activity increases
 • Constriction of great veins
 • Constriction of arteries (↑ TPR)
 • Increase in heart rate (> 20bpm)

Reflex mediated

no reflex reflex

BP (mmHg)
95 100 95

HR
55 95

BP
55 95

HR
100 100

BP
195 105