Renal Pharmacology - Diuretics

Edward JN Ishac, Ph.D.

Smith Building, Room 742
ishac@hsc.vcu.edu
8-2127 8-2126

Department of Pharmacology and Toxicology
Medical College of Virginia
Campus of Virginia Commonwealth University
Richmond, Virginia, USA

Renal Anatomy

- Nephron: structural unit of kidney
- Glomerulus: site of ultrafiltration
- Tubular system: contains highly specialized cells that contain ion transport systems and possess water permeable properties.
- Hormonal control: by antidiuretic hormone (ADH, Post. Pit.) and aldosterone (adrenal cortex).

Renal function - Recycle, Recycle, Recycle

Filtration, Reabsorption & Excretion

GFR: 180 L/day (125 ml/min)
Urine output: 1-1.5 L/day
Filtered Na+: 25,200 mEq/d
Na+ excreted: 100 -150 mEq/d

Diuretics drugs increase the daily urine output/excretion of Na+ by inhibiting the re-absorption of ions (Na+ or Cl-).

Glomeruli

About 1 million nephrons / kidney
Electron micrographs

Surface view
Cross-section

% Reabsorbed

<table>
<thead>
<tr>
<th>Substance</th>
<th>Filtered</th>
<th>Reabsorbed</th>
<th>Excreted</th>
<th>% Reabsorbed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na (mEq)</td>
<td>26,000</td>
<td>25,850</td>
<td>150</td>
<td>99.4</td>
</tr>
<tr>
<td>Na (mEq)</td>
<td>18,000</td>
<td>17,850</td>
<td>150</td>
<td>99.2</td>
</tr>
<tr>
<td>HCO₃ (mEq)</td>
<td>4,900</td>
<td>4,900</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Urea (mM)</td>
<td>870</td>
<td>460</td>
<td>410</td>
<td>53</td>
</tr>
<tr>
<td>Glucose (mM)</td>
<td>800</td>
<td>800</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Water (L)</td>
<td>180</td>
<td>179,000</td>
<td>1,000</td>
<td>99.4</td>
</tr>
<tr>
<td>K⁺ (mEq)</td>
<td>900</td>
<td>900</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

*While all filtered K⁺ is reabsorbed, some is secreted in the distal tubule in exchange for Na⁺.
Therapeutic uses of diuretics

- **Congestive heart failure:** Thiazide
- **Hypertension:** Thiazide, K+ sparing, Loop
- **Kidney disease:** Osmotic
- **Nephrolithiasis (kidney stones):** CA inhibitors
- **Hepatic cirrhosis:** Thiazide, Loop
- **Hypercalcemia:** Loop
- **Idiopathic edema:** Loop
- **Diabetes insipidus:** Thiazide
- **Increase drug elimination:** CA inhibitors, Osmotic
- **Reduce intracranial pressure:** Osmotic, CA inhibitors
- **Reduce intraocular pressure:** Osmotic, CA inhibitors
- **Altitude sickness:** CA inhibitors

Glomerular Filtration in Bowman's Capsule

- **Glomerular filtration:** production of an ultrafiltrate of the plasma
- **Glomerular filtration:** dependent on Effective Filtration Pressure (EFP)

\[
EFP = 55 - (25 + 10) = 20 \text{ mmHg}
\]

Note: During hypotension, glomerular filtration may cease, and urine output may stop. This retains vascular volume and may preserve BP.

Proximal Tubule

- **Active Na reabsorption (60% of filtered load) by Na+/H+ antiporter**
- **85% of filtered bicarbonate (HCO}_3^-\) is reabsorbed**
- **60% of filtered water (passive water reabsorption of iso-osmotic urine 300 mOsmol)**

<table>
<thead>
<tr>
<th>Element</th>
<th>%Remaining</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>40</td>
</tr>
<tr>
<td>Na+</td>
<td>40</td>
</tr>
</tbody>
</table>

Note: Water is NEVER actively pumped anywhere in a nephron.

Proximal tubular - Osmotic diuretics

Freely filtered through glomerulus; increase the osmolality of the tubular fluid → hinder water reabsorption in the proximal tubule (major site), the descending loop of Henle, and the collecting tubules.

A. Mannitol (Osmotrol®)
- Given i.v., 90% recovered unchanged in urine after 24 hr
- Promote diuresis during acute renal failure
- Reduction of intracranial pressure of cerebral edema
- Promote excretion of toxic substances

B. Urea (Ureaphil®)
- 30% solution i.v. to reduce intracranial pressure

Action of Mannitol

- **- Mannitol**
- **+ Mannitol**
Proximal tubular – Carbonic Anhydrase Inhibitors
- Not commonly used (weak action)
- Inhibit carbonic anhydrase that converts \(\text{HCO}_3^- \) into \(\text{H}_2\text{O} \) and \(\text{CO}_2 \), and back
- Net effect: ↓water, \(\text{Na}^+ \) and \(\text{HCO}_3^- \) in proximal tubule.

Acetazolamide (Diamox®), Dichlorphenamide (Daranide®); Methazolamide (various)
- Glaucoma: reduce aqueous humor formation
- Nausea and vomiting associated with acute mountain sickness
- Epilepsy: adjunctive agent; retards abnormal, excessive discharge of CNS neurons
- Reversal of metabolic alkalosis
- Potential adverse effect: Metabolic acidosis

Carbonic Anhydrase Inhibitors

Loop of Henle
Descending loop of Henle
- No active pumps
- Water leaves tubule by osmosis
- \(\text{Na}^+ \) and urea concentrations outside the tubule (medullary interstitium) increase from 400 to 1200 mOsmol from the top to the bottom of the loop, respectively.
- As the fluid in the lumen of the tubule moves down the tubule, the fluid osmolarity increases in a concomitant fashion (i.e., 400 to 1200 mOsmol).

Thick ascending loop of Henle
- Active \(\text{Na}^+ \) reabsorption (25% of filtered load) by \(\text{Na}^+ / \text{K}^+ / 2\text{Cl}^- \) co-transporter
- \(\text{Na}^+ \) reabsorption leads to dilution of the tubular fluid
- \(\text{Ca}^{++} \) and \(\text{Mg}^{++} \) are reabsorbed via a paracellular pathway

Distal Convoluted Tubule
- Active \(\text{Na}^+ \) reabsorption (10% of filtered load) by \(\text{Na}^+/\text{Cl}^- \) co-transporter
- Relatively impermeable to water, therefore \(\text{Na}^+ \) reabsorption further dilutes the tubular fluid.
- \(\text{Ca}^{++} \) is reabsorbed by an apical \(\text{Ca}^{++} \) channel and a basolateral \(\text{Na}^+/\text{Ca}^{++} \) exchanger

Distal Convoluted Tubule
- Administration: per os, i.v., i.m.

Indications
- Edema with hepatic cirrhosis, renal disease
- Edema associated with congestive heart failure
- Asthenes due to malignancy, lymphedema, idiopathic edema
- Hypertension (oral forms)
- Acute hypercalcemia

Adverse effects
- Excessive diuresis—dehydration, depletion of \(\text{Ca}^{++}, \text{Mg}^{++}, \text{K}^+ \), decreased blood volume (orthostasis, shock)
- Transient/reversible ototoxicity (i.e. hearing loss)
Thiazide Diuretics

Inhibition of the Na⁺-Cl⁻ cotransporter system

Thiazides: moderately effective since 85% of the filtered load of Na⁺ has been reabsorbed in earlier parts of the nephron.

Chlorothiazide (Diuril®), (12 other types available)
- **Hypertension**
 - Adjunctive therapy for edema of various types, including CHF
 - Prevention of kidney stones due to hypercalciuria (nephrolithiasis); thiazides have a direct effect to increase Ca++ reabsorption

Adverse effects
- Hypokalemia - increased delivery of Na⁺ to distal tubule reduces reabsorption of K⁺ (potassium supplements added to tmt)
- Hypercalcemia - due to increased Ca++ reabsorption.
- Hyperuricemia - long term reduces uric acid secretion (gout)

Birkenhager: J Hyperten. 1990, 8 (Suppl 2) S3 -S7.

Collecting Tubule

- Site of active Na⁺ reabsorption (2-5% of filtered load)
- Final site for determining Na⁺ concentration of the urine
- Site of K⁺ release into the tubular lumen through K⁺ channels

Aldosterone:
- Increases activity of membrane Na⁺ and K⁺ channels, and Na⁺/K⁺ ATPase pump
 - Na⁺ reabsorption and K⁺ excretion

Antidiuretic hormone (ADH):
- Absence of ADH tubule impermeable to water reabsorption
 - Diabetes Insipidus results in the production of as much as 20L/d of dilute urine
 - Central - inadequate ADH release from posterior pit.
 - Nephrogenic - absence of tubular response to ADH

Intercalated Cells: site for proton secretion into urine

Diabetes Insipidus

Potassium Sparing Diuretics

Spironolactone (Aldactone®)
- Competitive receptor antagonist of aldosterone
 - Inhibition of Na⁺ and K⁺ channels (decreased K⁺ excretion)
 - Seldom used alone (low potency), used in combination with K⁺ depleting agents; esp. in antihypertensive therapy.

Adverse effects:
- Hyperkalemia
- Estrogen-like effects (steroidal structure)
- Carcinogenic in rats

Triamterene (Dyrenium®) (Amiloride (Midamor®))
- Inhibition of Na⁺ and K⁺ channels (decreased K⁺ excretion)
- Seldom used alone (low potency), valuable in combination with K⁺ depleting agents, esp. in antihypertensive therapy.
- Adverse effects: hyperkalemia and photosensitivity
Sites of Diuretic Action

NaCl NaHCO₃

Plasma

Diuretics

screated

NaK-2Cl

diuretics

ADH antagonists (L-arginine, doxazosin)

H₂O

NaK-2Cl

Na+-K+-2Cl⁻

Diuretics

screated

NaCl

Ca Inhibitors

Proximal tubule

Loop Diuretics

Loop of Henle

Thiazides: distal tubule

Hydrocortisone

Plasma Na 145 mEq/L

Filtered Load 26,100 mEq/day

GFR 180 L/day

Thick Ascending Limb

Urine Na 100 mEq/L

Na Excretion 155 mEq/day

Volume 1.5 L/day

Therapeutic uses of diuretics

- Congestive heart failure: Thiazide
- Hypertension: Thiazide, K⁺ sparing, Loop
- Kidney disease: Osmotic
- Nephrolithiasis (kidney stones): CA inhibitors
- Hepatic cirrhosis: Thiazide, Loop
- Hypercalcemia: Loop
- Idiopathic edema: Loop
- Diabetes insipidus: Thiazide
- Increase drug elimination: CA inhibitors, Osmotic
- Reduce intracranial pressure: Osmotic
- Reduce intraocular pressure: Osmotic, CA inhibitors
- Altitude sickness: CA inhibitors

Summary

Therapeutic uses of diuretics

- Congestive heart failure: Thiazide
- Hypertension: Thiazide, K⁺ sparing, Loop
- Kidney disease: Osmotic
- Nephrolithiasis (kidney stones): CA inhibitors
- Hepatic cirrhosis: Thiazide, Loop
- Hypercalcemia: Loop
- Idiopathic edema: Loop
- Diabetes insipidus: Thiazide
- Increase drug elimination: CA inhibitors, Osmotic
- Reduce intracranial pressure: Osmotic
- Reduce intraocular pressure: Osmotic, CA inhibitors
- Altitude sickness: CA inhibitors