General Anesthetics

Pharmacology 604
Katherine L. Nicholson, D.V.M., Ph.D.
Dept. Pharmacology/Toxicology
klnichol@hsc.vcu.edu

General Anesthesia - Characteristics

- Definition (G&G) - "Reversible depression of CNS function resulting in loss of response to and perception of all external stimuli."
 - Produce reversible "sleep"
 - Produce analgesia
 - Suppress reflexes
 - Produce muscle relaxation
 - Produce Amnesia
 - Do not suppress respiratory and cardiovascular function
 - Inexpensive and easy to administer

Balanced Anesthesia

- Ideal general anesthetic does not exist.
- Combinations of drugs to accomplish what one anesthetic can not do alone.
- Agents used for balanced anesthesia are -
 - Hypnotics
 - Neuromuscular blocking agents
 - Analgesics

COMBINATION OF DRUGS CAN LOWER DOSES OF EACH DRUG TO PRODUCE THE SAME OR GREATER EFFECT ON PATIENT

Four Stages of Anesthesia

- Stage I - analgesia
- Stage II - delirium
- Stage III - surgical anesthesia
- Stage IV - respiratory paralysis

Types of General Anesthetics

Extremely diverse group of chemicals which produce a similar endpoint

- Inhalant or volatile
- Injectable (intravenous)
Inhalational Anesthetics

- Administered as vapors or gases
- Special set of physical principles govern absorption, distribution, and elimination
- Partial pressure - proportional to the concentration of anesthetic in gas or tissue at equilibrium

Factors affecting MAC

Factors decreasing MAC
- Hypotension
- Anemia (PCV < 13%)
- Hypothermia
- Metabolic acidosis
- Extreme hypoxia (PaO2 < 38 mmHg)
- Age: old animal requires less anesthetic
- Premedication (opioids, sedatives, tranquilizers)
- Local anesthetics
- Pregnancy
- Hyperthyroidism
- Concurrent use of nitrous oxide

Factors increasing MAC
- Increasing body temperature
- Hypothyroidism
- Hypernatremia

Factors NOT affecting MAC
- Type of stimulation
- Duration of anesthesia
- Species
- Sex
- PaCO2 between range of 14-45 mmHg
- Metabolic alkalosis
- PaO2 between range of 38-500 mmHg
- Hypertension
- Potassium

Induction and Recovery

- The lower the blood:gas partition coefficient the faster the induction and recovery
 - The lower the solubility in blood, the faster the process of equilibration
 - Less drug has to be transferred via the lungs to the blood in order to achieve a given partial pressure
 - A single lungful of air containing a low-solubility agent will bring the partial pressure in the blood closer to that of the inspired air

- Recovery is the same
 - Low solubility in blood = fast induction and recovery
 - High solubility in blood = slower induction and recovery

MAC: Minimum Alveolar Concentration

- Potency measure
- 1 MAC is the concentration necessary to prevent responding in 50% of population

Solubility & Pharmacokinetics

- Solubility expressed as partition coefficients
 - a ratio of the concentration of the agent in two phases at equilibrium

 - Blood-gas partition coefficient
 - Solubility in blood
 - main factor that determines the rate of induction and recovery
 - Oil-gas partition coefficient
 - fat solubility
 - determines the potency of an anesthetic (as well as kinetics)

Anesthetic Properties

- Potency
- Blood Solubility
- Brain Solubility
Nitrous Oxide

- Relatively safe
 - Minimal effects on heart rate and blood pressure
 - Little effect on respiration
- Low blood solubility (quick recovery)
- MAC value is 105% - Needs other agents for surgical anesthesia
- Weak anesthetic, powerful analgesic

Nitrous Oxide - Disadvantages

- Cannot produce anesthesia without hypoxia
- Poor muscle relaxation
- Diffuses into closed spaces
- Inhibits vitamin B-12 metabolism
- Inhibits methionine synthetase (precursor to DNA synthesis)
- Abuse liability

Anesthetics - Halogenated ethers

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diethyl ether</td>
<td>H</td>
<td>H</td>
<td>CH₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Fluoroxyne</td>
<td>H</td>
<td>H</td>
<td>CH₂</td>
<td>H</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Methoxyflurane</td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>H</td>
<td>Cl</td>
</tr>
<tr>
<td>Desflurane</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Isoflurane</td>
<td>H</td>
<td>F</td>
<td>H</td>
<td>F</td>
<td>Cl</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Enflurane</td>
<td>F</td>
<td>F</td>
<td>H</td>
<td>F</td>
<td>F</td>
<td>Cl</td>
<td>F</td>
<td>H</td>
</tr>
<tr>
<td>Sevoflurane</td>
<td>F</td>
<td>F</td>
<td>H</td>
<td>F</td>
<td>Cl</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Halothane (Fluothane®)

- Most potent inhalational anesthetic
 - MAC of 0.75%
- Very soluble in blood and adipose tissue
 - Prolonged emergence
- Inhibits sympathetic response to painful stimuli

Halothane - Disadvantages

- Decreases respiratory drive
- Depresses cardiovascular function
- Sensitizes myocardium - can lead to ventricular arrhythmias
- “Halothane Hepatitis”
- Malignant Hyperthermia

Enflurane (Ethrane®)

- Stable, nonflammable liquid with pungent odor
- MAC 1.68%
- Cardiac effects
 - Depression and decreased systemic vascular resistance
 - Inhibits sympathetic baroreflex response
 - Sensitizes myocardium
- Decreases respiratory drive
- Metabolism one-tenth that of halothane
 - Releases fluoride ion - renal toxicity
- Epileptiform EEG patterns
Isoflurane (Forane®)

- Less soluble than halothane
- MAC of 1.30%
- Excellent muscle relaxant
- Depresses respiratory drive and ventilatory responses—less than enflurane
- Depresses cardiovascular system
 - Myocardial depressant—less than enflurane
 - Inhibits sympathetic baroreflex response—less than enflurane
 - Produces most significant reduction in systemic vascular resistance
- Sensitizes myocardium—less than enflurane

Isoflurane Toxic Side Effects

- Little metabolism (0.2%)—low potential of organotoxic metabolites
- No EEG activity like enflurane
- Bronchoirritating, laryngospasm

Sevoflurane (Ultane®, Sevorane®) and Desflurane (Suprane®)

- Low solubility in blood—produces rapid induction and emergence
- Minimal systemic effects—mild respiratory and cardiac suppression
- Few side effects
- Expensive

Lipid-Based Theories of Anesthetic Action

Hypothesized anesthetic effect was due to disruption of lipid bilayer of plasma membranes.

Meyer Overton Correlation

<table>
<thead>
<tr>
<th>Compound</th>
<th>Potency k</th>
<th>Relevant Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halothane (HAL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoflurane (ISO)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enflurane (ENF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sevoflurane (SEV)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluroxene (FLU)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desflurane (DES)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclopropane (CYC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methoxyflurane (MOF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diethylether (DEE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform (CHL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane (DDM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfluoroethane (PFE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon tetrafluoride (CTF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfur hexafluoride (SHF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xenon (XEN)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen (NIT)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krypton (KRY)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argon (ARG)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...however.....

- Volume expansion by nonanesthetic compounds
- Correlation between fluidity and anesthetic levels only occurred at high concentrations.
- Small changes in temperature did produce significant fluidity changes without causing anesthesia while large changes in anesthetic concentration produced small changes in fluidity.
- Cut-off effect—M-O rule only holds up to a certain size
- Inhalant anesthetics show stereoselectivity in effects
Protein-based theories of Anesthetic Action

Anesthetics bind to hydrophobic/lipophilic sites on proteins.
- induce/prevent conformational change
- alter kinetics of conformational changes
- compete with ligands

Ok, so which receptors matter....

- GABA_A
- Glutamate (AMPA and NMDA)
- Glycine (strychnine-sensitive, in spinal cord and brainstem)
- Nicotinic ACh

Injectable anesthetics

- Advantages
 - minimal equipment
 - 'direct' CNS access
 - wide variety of agents, techniques
- Disadvantages
 - recovery dependent on uncontrollable factors
 - individual variation in drug response
 - potential for drug 'accumulation'

Barbiturates

- Phenobarbital
- Pentobarbital Sodium
- Thiopental Sodium
- Thiamylal Sodium
- Methohexital

Barbiturates - General

- Very alkaline - very irritating to tissues
- Depress polysynaptic responses in the CNS
- Effect on GABA receptors
 - Depress Reticular Activating System
 - Depress sympathetic nervous system
- Poor analgesics
- Excitement at low doses
- Low therapeutic index!

Cardiopulmonary Effects

- Arrhythmogenic!!!
 - Transient VPCs & ventricular bigeminy
- Transient, moderate decrease in blood pressure
- Decrease cardiac contractility
- Vascular effects variable, but in general cause mild vasodilatation
- Respiratory depressants
Propofol

- **GABA_A positive modulator**
- Solubilized in an emulsion
- Rapid onset, short duration of action; rapid smooth recoveries w/o ‘hangover’
- Useful for induction &/or maintenance (by constant infusion)
- Mild to moderate hypotension, may produce bradyarrhythmias
- Respiratory depressant, may produce apnea

Disadvantages

- Expensive
- Moderate hypotension, possible bradyarrhythmias, respiratory depression (apnea not uncommon)
- Poor analgesia (need high doses)
- Drug vehicle supports bacterial growth

Etomidate

- **GABA_A positive modulator**
- Non-barbiturate ultrashort sedative/hypnotic
- Minimal cardiovascular effects
- Rapid onset/recovery
- Wide safety margin

Dissociative Anesthetics

- Ketamine
- Tiletamine
- NMDA receptor channel blockers
- Produces amnesia, superficial analgesia, and catalepsy
- Dissociates the cortex from lower centers
- Both excitatory & depressant effects on EEG
- Actually has positive effects on CV measures and minimal respiratory depression

Problems...

- Seizures
- Muscle rigidity
- Poor visceral analgesia
- Increased secretions
- Poor recoveries - delirium
- Increased myocardial work load

Neuroleptanalgesia

- Combination of opioid + tranquilizer/sedative
- Produces state of light ‘anesthesia’
- Useful for debilitated or geriatric patients
- Eg fentanyl/diazepam; droperidol/fentanyl; oxymorphone/midazolam; etc...
Overview of mechanisms of action for general anesthetic.....

Ion Channels and Anesthesia

• GABA - primary anesthetic target
 - Act as modulators, not direct agonists
 - Increase current induced by low level GABA by >50%
 - Work by prolonging channel open-time
 - Inhalants, barbs, benzos, steroids, propofol

• Glycine - important for spinal cord and lower brainstem

• Glutamate - NMDA, AMPA & Kainate
 - Dissociative anesthetics
 - Relatively insensitive to inhalants (?) and barbiturates
 - nAChR - most simple anesthetics can stabilize desensitized form
 - Definitely involved in many inhalant effects
 - Increasing interest for role with other anesthetics

• Voltage gated ion channels -
 - Na⁺, K⁺, Ca²⁺
 - Do not appear to play a role in anesthesia

Potential Receptor Targets

<table>
<thead>
<tr>
<th>Anesthetic</th>
<th>GABA</th>
<th>Glycine</th>
<th>Neuronal nACh</th>
<th>AMPA</th>
<th>NMDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halothane</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>-/0</td>
</tr>
<tr>
<td>N₂O</td>
<td>+++</td>
<td>+/0</td>
<td>?</td>
<td>-/0</td>
<td>-/0</td>
</tr>
<tr>
<td>Xenon</td>
<td>0</td>
<td>?/0</td>
<td>0</td>
<td>0</td>
<td>-/0</td>
</tr>
<tr>
<td>Barbiturates</td>
<td>+++</td>
<td>+/0</td>
<td>+++</td>
<td>0</td>
<td>-/0</td>
</tr>
<tr>
<td>Ketamine</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-/0</td>
</tr>
<tr>
<td>Propofol</td>
<td>+++</td>
<td>+++</td>
<td>-/0</td>
<td>+/0</td>
<td>-/0</td>
</tr>
<tr>
<td>Neurosteroids</td>
<td>+++</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>