Parasympathetic Nervous System
Part II
Edward JN Ishac
Smith Building, Room 742
eishac@hsc.vcu.edu
8-2127 8-2126
Department of Pharmacology and Toxicology
Medical College of Virginia
Campus of Virginia Commonwealth University
Richmond, Virginia, USA

Parasympatholytic Agents

- **Antimuscarinic**: eg. atropine
 - block Ach in parasympathetic effector junctions (muscarinic receptors)
- **Antinicotinic: Ganglia** eg. trimethapan
 - block Ach in ganglia (both parasympathetic and sympathetic, N\textsubscript{2} or N\textsubscript{1}-receptors)
- **Antinicotinic: NMJ** eg. curare, succinylcholine
 - block Ach in neuromuscular junctions (skeletal muscle relaxants, N\textsubscript{a} or N\textsubscript{2}-receptors)

Anticholinergic Effects on Organ Systems

- **Heart**: tachycardia, ↑ A-V nodal CV (M2-receptors)
- **Vasculature**: no effect, although toxic doses cause pronounced direct vasodilation (red blotches)
- **Smooth muscle**
 - GI-tract, urinary tract: relaxation, ↓ secretion, ↓ motility
 - Lung: bronchial relaxation & ↓ bronchial secretions
 - Eye: mydriatic (sphincter relaxation), cycloplegic (ciliary muscle relaxation)
- **Secretions**
 - ↓ secretion: dry mouth, dry skin,
 - ↓ decreased gastric acid secretion
- **CNS**: agitation, delirium, confusion, elderly are more susceptible

Deadly Nightshade
- Approx 5,000 per yr
- Mainly atropine
- Devil’s apple
- Stink weed
- Devil’s cherries

Datura
- Mainly scopolamine & hyoscyamine
- Thorn apple
- Jimson weed

Antimuscarinic Agents

- **Belladonna alkaloids**: well absorbed, CNS effects
 - atropine (7-10 d) - “belladonna”
 - homatropine (1-3 d) - iritis
 - scopolamine (3-7 d) - motion sickness
- **Synthetic antimuscarinics**
 - ipratropium (quaternary amine) - asthma
 - pirenzepine (tri-cyclic, M1-selective) - ulcer
 - benztropine - Parkinson’s disease
 - glycopyrrolate (quaternary amine)
 - cyclopentolate (tertiary amine)
 - propantheline (quaternary amine)

Other Parasympatholytics

- **Hemicholinium**
 - no clinical use
 - inhibits uptake of choline into nerve terminal (rate limiting step)
 - leads to decreased Ach synthesis
- **Botulinus toxin**
 - prevent release of Ach
 - contamination of improperly prepared food
Clinical use: facial muscle spasms, strabismus, wrinkles
Botulinum toxin
Inhibits Ach release
Single treatment can last 3-4 months

Facial wrinkles, FDA Approval: Apr 2002

Clinical uses of Antimuscarinic Agents
- respiratory (decrease bronchial secretion) ie. atropine
- asthma ie. ipratropium
- ophthalmologic (mydriasis, cycloplegia) eg. iritis (ie. atropine)
- Parkinson’s disease ie. benztropine
- cardiovascular ie. atropine
- motion sickness ie. scopolamine
- GI disorders (peptic ulcers (pirenzepine), diarrhea)
- pesticide poisoning (malathion) ie. atropine + 2-PAM
- mushroom poisoning (muscarine) ie. atropine
- nerve gases (sarin) ie. atropine + 2-PAM

Symptoms of Antimuscarinic Toxicity
Belladonna (beautiful lady) poisoning
- mad as a hatter: CNS, delirium
- red as a beet: direct vasodilation
- blind as a bat: cycloplegia
- hot as hell (a hare): ↓sweat, thermoregulation
- dry as a bone: decreased secretions

Toxicity and treatment
- Toxicity: dry mouth, mydriasis, cycloplegia, tachycardia, hot flushed skin, agitation and delirium.

High concentrations may cause ganglionic-blockade leading to hypotension
- Treatment:
 - quaternary cholinesterase inhibitor eg. neostigmine or physostigmine (cns action)
 - for hypotension: sympathomimetics (α-agonist, eg.methoxamine)

Pharmacology of the Eye
“The eye is a good example of an organ with multiple ANS functions, controlled by several different autonomic receptors.” (Katzung)

Increased intraocular pressure: Untreated \rightarrow blindness

Glaucoma:
- Open-angle (wide, chronic) – treated with beta-blockers and other agents
- Closed-angle (narrow-angle) – dilated iris can occlude outflow. Pilocarpine or surgical removal of part of iris (iridectomy)

Botulinum toxin - Strabismus
Glaucoma

Increased intraocular pressure: Untreated → blindness

Glaucoma:
- Open angle (wide, chronic) – treated with beta-blockers and other agents
- Closed angle (narrow-angle) – dilated iris can occlude outflow
 - Pilocarpine or surgical removal of part of iris (iridectomy)

Glaucoma treatment
1. α-Agonist: ↑Outflow
2. M-Agonists: ↑Outflow
3. β-Blocker: ↓Secretion
4. α2-Agonist: ↓Secretion
5. Prostaglandins: ↑Outflow
6. Carbonic acid inhibitors: ↓Secretion

Actions on the Eye

1. α-Agonist: ↑Outflow
2. M-Agonists: ↑Outflow
3. β-Blocker: ↓Secretion
4. α2-Agonist: ↓Secretion
5. Prostaglandins: ↑Outflow
6. Carbonic acid inhibitors: ↓Secretion

Innervation of the iris

- Sympathetic pathway
- Parasympathetic pathway
- Innervation of the iris

Ach effects on smooth muscle in the eye

Contraction of sphincter muscle → miosis

Contraction of ciliary muscle for near vision

Drugs used in glaucoma

<table>
<thead>
<tr>
<th>Cholinomimetics</th>
<th>Ciliary muscle contraction → opening of trabecular meshwork → Outflow</th>
<th>Topical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilocarpine, physostigmine, echothiophate</td>
<td>↑</td>
<td>Tropical</td>
</tr>
<tr>
<td>Alpha Agonists: Unselective: Epinephrine</td>
<td>↓ Aqueous secretion from the ciliary epithelium</td>
<td>Topical</td>
</tr>
<tr>
<td>Alpha2-Selective Agonists: Apraclonidine</td>
<td>↓ Aqueous secretion from the ciliary epithelium</td>
<td>Topical</td>
</tr>
<tr>
<td>Beta-Blockers: Timolol, betaxolol, carteolol</td>
<td>↓ Secretion due to lack of HCO3-</td>
<td>Oral, Topical</td>
</tr>
<tr>
<td>Diuretics: Carbonic acid inhib.</td>
<td>Latanoprost (PGF2α)</td>
<td>↑ Outflow</td>
</tr>
</tbody>
</table>

Effects of pharmacological agents on the pupil

<table>
<thead>
<tr>
<th>Clinical Setting</th>
<th>Drug</th>
<th>Pupillary Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Sympathomimetic ie. phenylephrine</td>
<td>Dilation (mydriasis)</td>
</tr>
<tr>
<td>Normal</td>
<td>Parasympathomimetic ie. pilocarpine</td>
<td>Constriction (miosis) cyclopegia</td>
</tr>
<tr>
<td>Normal</td>
<td>Parasympatholytic ie. atropine</td>
<td>Mydriasis, cyclopegia</td>
</tr>
<tr>
<td>Horner’s syndrome</td>
<td>Cocaine 4-10%</td>
<td>No dilation</td>
</tr>
<tr>
<td>Preganglionic Horner’s</td>
<td>Hydroxyamphetamine</td>
<td>Dilation</td>
</tr>
<tr>
<td>Postganglionic Horner’s</td>
<td>Hydroxyamphetamine</td>
<td>No dilation</td>
</tr>
<tr>
<td>Adie’s pupil</td>
<td>Pilocarpine 0.05-0.1%</td>
<td>Constriction</td>
</tr>
<tr>
<td>Normal</td>
<td>Opioids (oral or intravenous)</td>
<td>Pinpoint pupils</td>
</tr>
</tbody>
</table>
Eye - Horners Syndrome

Destruction of Sympathetic innervation to the iris
- loss of preganglionic fibers
- loss of postganglionic fibers
- parasympathetic innervation left unopposed

Horners Syndrome (note sagging left eyelid and miosis)

Adies Pupil & Iritis

Adies Pupil
Poor light reflex
Dilated pupil

Iritis
Muscarinic blocker to dilate pupil to prevent attachment to lens.
Steroid to treat inflammation.

Topical scopolamine drops on pupil diameter and accommodation.

The normal human eye. One drop (0.5%) at zero time and 30 min.

- Pupil diameter
- Accommodation

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accommodation</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Pupil Diameter</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

Acetylcholinesterase Inhibitors

<table>
<thead>
<tr>
<th>Neurons of the ANS</th>
<th>Edrophonium</th>
<th>Neostigmine</th>
<th>Physostigmine</th>
<th>Pyridostigmine</th>
<th>Demercarium</th>
<th>Ambenonium</th>
<th>Echothiophate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parasympathetic</td>
<td>apricot</td>
<td>egg</td>
<td>mushroom</td>
<td>orange</td>
<td>potato</td>
<td>pineapple</td>
<td>plungers</td>
</tr>
<tr>
<td>Sympathetic</td>
<td>carrot</td>
<td>beet</td>
<td>banana</td>
<td>pear</td>
<td>potato</td>
<td>pineapple</td>
<td>carat</td>
</tr>
<tr>
<td>Somatic</td>
<td>cherry</td>
<td>beet</td>
<td>banana</td>
<td>pear</td>
<td>potato</td>
<td>pineapple</td>
<td>cherry</td>
</tr>
</tbody>
</table>

Rapidly reversible (competitive)	Edrophonium	used for myasthenia gravis (aka Tensilon)
Slowly reversible (competing substrate, carbamylates enzyme)	Neostigmine	does not cross BBB; affects skeletal muscle most strongly; used for myasthenia gravis & lens
	Physostigmine	crosses BBB; used for glaucoma and for treatment of belladonna poisoning
	Pyridostigmine	used for myasthenia gravis
	Demecarium	used for myasthenia gravis
Irreversible or very slowly reversible (phosphorylates enzyme)	Organophosphate insecticides, nerve gases	
	Edrophonium	used for glaucoma
Structure and Physiology of the Autonomic Ganglion

- Ganglionic nicotinic (sympathetic & parasympathetic)
 - pentamer: 2 distinct subunits (α,β) - α2β3 or α3β2
 - α chains contain the Ach binding sites
 - binding of Ach → opening of ion channel (Na+ in, K+ out)

Ganglionic stimulants

- **Nicotine**
 - tobacco (0.3-20mg, fatal dose, 40mg)
 - metabolized & excreted rapidly
 - ↑ HR, ↑ BP, ↑ respiratory rate

- **Ach, DMPP** (experimental)

- **Lobeline** (tobacco)

- **Insecticides & rodenticide**
 - nicotine is often the effective agent

- **Toxicity**
 - CNS stimulation: convulsions, headache
 - NMJ paralysis: depolarizing blockade
 - hypertension, hypotension, cardiac arrhythmias
 - vomiting, diarrhea, salivation

Ganglionic Blocking Agents

- **Mecamylamine**
 - effective orally, CNS effects

- **Trimethapan**
 - inactive orally
 - used in hypertensive emergency (cns origin)
 - controlled hypotension during surgery
 - short duration of action, 5-10 min, no cns action

- **Toxicity**: hypotension, postural hypotension

- **Treatment**: pressor agent to counter hypotension

Treatment of poisoning from ganglionic stimulants

- **Treatment**:
 - vomiting induced for oral ingestion such as insecticides

- **Treatment symptom-directed**
 - muscarinic excess: anticholinergic (atropine)
 - NMJ blockade: mechanical respiration
 - CNS stimulation: anticonvulsant (diazepam)

Ganglionic Blocking Agents

<table>
<thead>
<tr>
<th>Site</th>
<th>Predominant ANS Effect</th>
<th>Effect of Ganglionic Blockade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterioles</td>
<td>Sympathetic vasodilation, hypotension</td>
<td></td>
</tr>
<tr>
<td>Veins</td>
<td>Sympathetic vasodilation, ↓ venous return, ↓ CO</td>
<td></td>
</tr>
<tr>
<td>Heart</td>
<td>Parasympathetic tachycardia</td>
<td></td>
</tr>
<tr>
<td>Iris</td>
<td>Parasympathetic mydriasis (dilation)</td>
<td></td>
</tr>
<tr>
<td>Ciliary muscle</td>
<td>Parasympathetic cycloplegia (loss of accommodation)</td>
<td></td>
</tr>
<tr>
<td>GI tract</td>
<td>Parasympathetic ↓ tone, ↓ motility, constipation</td>
<td></td>
</tr>
<tr>
<td>Urinary</td>
<td>Parasympathetic urinary retention</td>
<td></td>
</tr>
<tr>
<td>Salivary glands</td>
<td>Parasympathetic xerostomia (dry mouth)</td>
<td></td>
</tr>
<tr>
<td>Sweat glands</td>
<td>Sympathetic anhidrosis (low sweating)</td>
<td></td>
</tr>
</tbody>
</table>

Note: Ganglia block also high dose nicotine or high dose AchE inhibitors
Mad as a Hatter

Mercury was used to treat hats. It was applied on to the fur to roughen the fibres and make them mat more easily.

Mercury is a cumulative poison that causes kidney and brain damage. Physical symptoms include trembling (known at the time as hatter’s shakes), loosening of teeth, loss of co-ordination, and slurred speech; mental ones include irritability, loss of memory, depression, anxiety, and other personality changes. This was called mad hatter syndrome.