Pharmacology of the Neuromuscular Junction (NMJ)

Edward JN Ishac, Ph.D.

Smith Building, Room 742
eishac@hec.vcu.edu
8-2127 8-2126

Department of Pharmacology and Toxicology
Medical College of Virginia
Campus of Virginia Commonwealth University
Richmond, Virginia, USA

Autonomic Nervous System

Neurons of the ANS

Neuromuscular Junction

NMJ Nicotinic Receptor

NMJ Blocking Agents

- Ion Channel
 - pentamer
 - Na⁺ in
 - K⁺ out

Infant: α2βδε
Adult: α2βδγ
NMJ Blocking Agents
Paralysis: small rapidly moving muscles (eyes, fingers), then limbs, last is respiratory muscles (recovery in reverse order)

• **Competitive (non-depolarizing) agents (curare)**
 - compete with Ach for binding to receptor
 - flaccid, relaxed paralysis
 - non-NMJ effects: ganglia, muscarinic blocking, histamine release
 - NMJ block can be reversed by AchE inhibitors

• **Non-competitive (depolarizing) agents (succinylcholine)**
 - Phase 1 block: membrane depolarization followed by paralysis
 - Phase 2 block: desensitization
 - NMJ block not reversed by AchE inhibitors

Competitive (nondepolarizing) Blocking Agents - Curare
- Tubocurarine, dimethylytubocarbine (metocarine)
 - no effect on nerve transmission
 - muscle can still be stimulated
 - 5-10mg (iv) produces flaccid paralysis
 - 10-20mg (iv) can produce apnea, not active orally
 - can cause histamine release (mast cells)
 - can block ganglionic receptors [high concentration]

- A Amazon hunter tips his darts with the poison curare

Competitive (nondepolarizing) Blocking Agents - Others
- Pancuronium
 - more potent than tubocurarine (x5)
 - reduced histamine release than curare
 - lack of ganglionic blockade
- Gallamine
 - also some muscarinic block
- Mivacurium
 - short acting, hydrolysis by AchE
- Atracurium
 - short acting, hydrolysis by AchE

Succinylcholine: Adverse effects & treatment
- **Toxicity:**
 - similar to competitive blockers with less effects at ganglia or histamine release
- **Treatment:**
 - Artificial respiration
 - use of AchE inhibitors will not reverse NMJ blockade
- **Adverse reactions:**
 - 'Atypical' pseudo-AchE (1:10,000, prolonged apnea, 2-3hr)
 - Hyperkalemia (esp. burn, trauma patients)
 - Malignant hyperthermia (esp. with halothane)
Hyperkalemia

- burn & trauma
- usually small ↑K+
- cardiac arrest
- support: dialysis glucose / insulin

Malignant Hyperthermia

- more likely with halothane
- 60% mortality
- ↑Ca++ → ↑ body temp
- tachycardia
dysrhythmia
- ↑HR, muscle rigidity

Treatment:
- Dantrolene
drug of choice
- ↓Ca++ release

Clinical Uses of NMJ Blocking Agents

- Muscle relaxation in surgery
decreases depth of anesthesia
- Orthopedics
dislocations, alignment of fractures
- Facilitate intubations
in mechanical artificial ventilation
- Facilitate internal examinations
laryngoscopy, bronchoscopy, esophagoscopy
- Prevent trauma
during electroshock therapy
- Diagnostic
tubocurarine (Myasthenia gravis), not commonly used not recommended, Edrophonium (Tensolin) better

NMJ Agents: Drug Interactions

Synergism with certain agents → ↓ dose
Calcium channel blockers ie. verapamil
- ↓Ach release
Aminoglycoside antibiotic ie. neomycin
- compete with Ca++
- ↓Ach release & stabilize membrane
Certain general anesthetic ie. halothane
- stabilize membrane

Direct Acting Neuromuscular Relaxant

- Dantrolene (Dantrium)
inhibits calcium release
- significant liver toxicity
- muscle weakness
- Clinical uses:
 stroke
cerebral palsy
malignant hyperthermia (DOC)
multiple sclerosis
- Other agents
Benzodiazepines

NMJ – Competitive vs Non Competitive

Comparison of Competitive (d-Tubocurarine) and
Depolarizing (Succinylcholine) Agents

| NMJ – Competitive vs Non Competitive |
| Comparison of Competitive (d-Tubocurarine) and Depolarizing (Succinylcholine) Agents |
NMJ Blocking Agents – Other Actions

<table>
<thead>
<tr>
<th></th>
<th>Ganglia</th>
<th>Muscarinic Receptors</th>
<th>Histamine Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>Succinylcholine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tubocurarine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metaocurine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gallamine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pancuronium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vecuronium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atracurium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doxacurium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipecuronium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mivacurium</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NMJ – Onset, Duration & Elimination

Onset, Duration and Elimination of Neuromuscular Blocking Drugs

<table>
<thead>
<tr>
<th></th>
<th>Onset (min)</th>
<th>Duration (min)</th>
<th>Mode of elimination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Succinylcholine</td>
<td>1-2</td>
<td>6-8</td>
<td>Hydrolysis by AchE</td>
</tr>
<tr>
<td>Tubocurarine</td>
<td>4-6</td>
<td>80-120</td>
<td>Kidney, liver</td>
</tr>
<tr>
<td>Metaocurine</td>
<td>4-6</td>
<td>80-120</td>
<td>Kidney</td>
</tr>
<tr>
<td>Gallamine</td>
<td>4-6</td>
<td>80-120</td>
<td>Kidney</td>
</tr>
<tr>
<td>Pancuronium</td>
<td>4-6</td>
<td>80-120</td>
<td>Kidney, liver</td>
</tr>
<tr>
<td>Vecuronium</td>
<td>2-4</td>
<td>30-40</td>
<td>Kidney, liver</td>
</tr>
<tr>
<td>Atracurium</td>
<td>2-4</td>
<td>30-40</td>
<td>Hydrolysis by AchE</td>
</tr>
<tr>
<td>Doxacurium</td>
<td>4-6</td>
<td>90-120</td>
<td>Kidney, liver</td>
</tr>
<tr>
<td>Pipecuronium</td>
<td>2-4</td>
<td>80-100</td>
<td>Kidney, liver</td>
</tr>
<tr>
<td>Mivacurium</td>
<td>2-4</td>
<td>12-18</td>
<td>Hydrolysis by AChE</td>
</tr>
</tbody>
</table>

Succinylcholine

"Good. That new sleeping drug really works, Matt!"

"Rapid onset and short duration, this suits! What are we going to name it?"