Pharmacology of the Parasympathetic Nervous System

Edward JN Ishac

Smith Building, Room 742
eishac@hsc.vcu.edu
8-2127 8-2126

Department of Pharmacology and Toxicology
Medical College of Virginia
Campus of Virginia Commonwealth University
Richmond, Virginia, USA

Autonomic Nervous System

Key Points
- Division – Anatomical
- Usually dual innervation
- Usually antagonistic
- Usually one dominates
- Usually some ANS “tone”

Neurons of the ANS

Key Points
- Preganglionic fibers – mylinated
- Postganglionic fibers – non mylinated
- SNS pre : post 1:20
- PNS pre : post 1:1
 (exception 1:10,000 Auerbachs plexus)
- Key role of Ach
- Motor fiber not part of ANS

Cholinoreceptors

Cholinergic Neurotransmission

Rate limiting step
Uptake of choline into nerve terminal

Termination
Enzymatic by acetylcholinesterase (AchE)
Cholinergic Receptors

- **Muscarinic** (7 transmembrane)
 - M1: autonomic ganglia, CNS
 - M2: heart
 - M3: smooth muscle, glands
 - M4, M5
 - M13: ↑ PLC, ↓ AC
 - G-protein coupled

- **Nicotinic** (ion channel)
 - pentamer, 5 subunits
 - N1 or N2: ganglia, adrenal medulla (α2β3, α3β2)
 - N3 or N4: skeletal muscle (infant α1β1δε, adult α2βδγ)
 - α subunit, Ach binding (2)

Muscarinic effects on organ systems

- **Heart** (M2)
 - ↓ HR, ↓ contractility, ↓ conduction velocity

- **Vasculature** (not innervated)
 - vasodilation: nitric oxide (NO)

- **Other smooth muscle**
 - Eye: pinpoint pupil (miosis), focus for near vision
 - GI-tract: ↑ tone to intestine, bladder, ↓ tone to sphincters
 - Lung: contract bronchial SM. → ↑ resistance, ↑ secretions
 - Exocrine glands:
 - ↓ sweating (cholinergic sympathetic), ↓ salivation, ↑ gastric acid secretion (M1)

Muscarinic receptor agonists

- **Choline esters**
 - Ach (muscarinic & nicotinic action)
 - Bethanechol (oral or sc, never iv or im → cardiac arrest)
 - Methacholine (not common)
 - Carbachol (direct/indirect; muscarinic & nicotinic)

- **Alkaloids**
 - Muscarine (mushrooms)
 - Pilocarpine (DOC, used in glaucoma emergence)
 - Oxotremorine (synthetic) CNS action (basal ganglia)

- **Uses**
 - Ophthalmic (Ach, brief miosis)
 - Diagnostic for belladonna poisoning (methacholine)
 - Urinary retention (bethanechol)
 - Reverse GIT depression (bethanechol)

True Acetylcholinesterase (AchE)

(Other: Pseudocholinesterase, circulating, plasma, butyrylcholinesterase)

<table>
<thead>
<tr>
<th>AchE</th>
<th>BuChE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nerves</td>
<td>Yes</td>
</tr>
<tr>
<td>NMJ</td>
<td>Yes</td>
</tr>
<tr>
<td>Circ.</td>
<td>Little</td>
</tr>
</tbody>
</table>

Quaternary group Acyl carbon

AchE: 300,000 Ach / enzyme / min (0.15 msec/cycle)

Wild Mushrooms - Amanita

10,000 cases per year
Muscarine poisoning
5,000 mushroom species
100 "bad", 10 "deadly"
Adverse Reactions - Cholinergics

- Adverse reactions: (SLUDE)
 - Salivation
 - Lacrimation
 - Urination
 - Diarrhea
 - Emesis (vomiting)
 - Cardiac slowing (arrest, esp. bethanechol)
 - Nausea, cramps
 - Bronchoconstriction, can precipitate asthma
 - Involuntary defecation, urination
 - Tremor, CNS induced convulsions

Nicotinic receptor agonists

Ganglionic stimulants

- Clinically not important
- Acetylcholine (natural transmitter)
- DMPP (experimental)
- Nicotine (alkaloid, tobacco)
- Lobeline (tobacco)

Indirectly-Acting Parasympathomimetics

- Interact with acetylcholinesterase
 True and/or pseudocholinesterase (serum)
- Two sites:
 - Anionic site that binds the quaternary amine and positions the Ach molecule
 - Esteratic site which attacks the acyl carbon
- Inhibitors of cholinesterase:
 - Reversible inhibitors (e.g., physostigmine)
 - Irreversible inhibitors (e.g., organophosphates)

Reversible inhibitors

- Quaternary ammonium compounds
 - Edrophonium (synthetic, water stable, 5-10 min)
 - Tensilon test – Myasthenia gravis
 - Ambenonium (synthetic, 4-8 hr)
- Carbamates
 - Physostigmine (0.5-2 hr)
 (tertiary amine, well absorbed, CNS activity, can give topically)
 - Neostigmine (0.5-2 hr)
 (quaternary amine, no CNS activity, synthetic, some direct action)

Myasthenia gravis

Autoimmune disease

- 1:10,000 (250,000 USA)
- Antibodies to NMJ nicotinic receptors leads to degradation
- Simplified synaptic folds
- Normal nerve terminal and transmitter
- Widened synaptic junction
- Diagnosis: Edrophonium (Tensilon, short acting) is used for diagnosis and determination of maintenance dose
- Treatment: Neostigmine has direct (stimulates receptor) and indirect actions (inhibition of AChE), no CNS activity.

Acetylcholinesterase and Reversible inhibitors

- Ach very fast 0.15 msec
- Neostigmine undergoes metabolism 0.5-6 hr
- Enzyme becomes operational again
Irreversible inhibitors

- **Organophosphates**
 - (highly lipid soluble, >50,000 compounds)
 - Diisopropyl-fluorophosphate (DFP)
 - Echthiophate (low lipid solubility, no CNS)
 - Sarin, Soman (nerve gases)
 - Malathion, Parathion (more toxic)
 - Inactive, converted to active compound in body (S O) pesticides, very lipid soluble

Acetylcholinesterase & Irreversible Inhibition

DFP, Isoflurophate

\[
\text{P}_3 \text{O} \quad \text{R}_1 \quad \text{X}
\]

2-PAM

Pralidoxime

No CNS action

DFP Aging

30-40 min

Nerve gas

secs / min

Malathion

4 – 6 hr

US Military 2-PAM / Atropine Injector

2.5 mg Atropine, 600mg 2-PAM

Clinical use: Acetylcholinesterase Inhibitors

- **Eye**: miosis (sphincter contraction), accommodation block (ciliary muscle contraction)
 - Use: Glaucoma (wide-angle or secondary glaucoma)
 - Physostigmine or echthiophate (long acting)

- **GI tract**: ↑ motility in paralytic ileus (post-op) or atony of urinary bladder. Neostigmine (bethanechol better)

- **Neuromuscular junction**:
 - Neostigmine in Myasthenia gravis
 - Edrophonium as diagnostic Myasthenia gravis
 - Reverse NMJ block after surgery, Neostigmine

- **Reverse toxicity by anticholinergic agents**:
 - ie. atropine, tricyclic antidepressants (high doses)
 - Physostigmine is preferred (CNS action)

Actions on the Eye

Glaucoma treatment

1. α-Agonist ↑ Outflow
2. M-Agonists ↑ Outflow
3. β-Blocker ↓ Secretion
4. α2-Agonist ↓ Secretion
5. Carbonic acid inhibitors ↓ Secretion

Acetylcholinesterase Inhibitors

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Uses</th>
<th>Approximate Duration of Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohols</td>
<td>Edrophonium (Tensilon) Myasthenia gravis, ileus, arrhythmias</td>
<td>5-15 minutes</td>
</tr>
<tr>
<td>Carbamates and related agents</td>
<td>Neostigmine (Prostigmine) Myasthenia gravis, ileus</td>
<td>1/2-2 hours</td>
</tr>
<tr>
<td></td>
<td>Pyridostigmine (Mestinon) Myasthenia gravis</td>
<td>3-6 hours</td>
</tr>
<tr>
<td></td>
<td>Physostigmine (Eserine) Glaucoma</td>
<td>1/2-2 hours</td>
</tr>
<tr>
<td></td>
<td>Ambenonium (Mytelase) Myasthenia gravis</td>
<td>4-8 hours</td>
</tr>
<tr>
<td></td>
<td>Demecarium (Humorsol) Glaucoma</td>
<td>4-6 hours</td>
</tr>
<tr>
<td>Organophosphates</td>
<td>Echothiophate, DFP (Phospholine), etc. Glaucoma</td>
<td>100 hours</td>
</tr>
</tbody>
</table>
Toxicity & Treatment of AchE Inhibitors

- **Adverse reactions:** (SLUDGE)
 - Salivation (muscarinic)
 - Lacrimation (muscarinic)
 - Urination (muscarinic)
 - Diarrhea (muscarinic)
 - Emesis (vomiting) (muscarinic)
 - Cardiac slowing (muscarinic)
 - Hypertension / hypotension (nicotinic)
 - NMJ paralysis (nicotinic)
 - Cramps (muscarinic)
 - Bronchoconstriction (muscarinic)
 - Tremor, nausea, CNS induced convulsions

- **Treatment:** Muscarinic antagonist ie. Atropine
 - AchE reactivator (Pralidoxime, 2-PAM)
 - Mechanical respiration

Toxicity of AchE Inhibitors

<table>
<thead>
<tr>
<th>SLUDGE</th>
<th>DUMBBELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>S - Salivation</td>
<td>D - Diarrhea</td>
</tr>
<tr>
<td>L - Lacrimation</td>
<td>U - Urination</td>
</tr>
<tr>
<td>U - Urination</td>
<td>M - Miosis/muscle weakness</td>
</tr>
<tr>
<td>D - Diarrhea</td>
<td>B - Bronchorrea (mucus)</td>
</tr>
<tr>
<td>G - Gastric upset</td>
<td>B - Bradycardia</td>
</tr>
<tr>
<td>E - Emesis</td>
<td>E - Emesis</td>
</tr>
<tr>
<td></td>
<td>L - Lacrimation</td>
</tr>
<tr>
<td></td>
<td>S - Salivation/sweating</td>
</tr>
</tbody>
</table>

Parasympatholytic Agents

- **Antimuscarinic:** eg. atropine
 - block Ach in parasympathetic effector junctions (muscarinic receptors)

- **Antinicotinic: Ganglia** eg. mecamylamine
 - block Ach in ganglia (both parasympathetic and sympathetic, N1 or N2-receptors)

- **Antinicotinic: NMJ** eg. curare, succinylcholine
 - block Ach in neuromuscular junctions (skeletal muscle relaxants, N2 or N2-receptors)

Antimuscarinic Agents

- **Belladonna alkaloids:** well absorbed, CNS effects
 - atropine (7-10 d) - “belladonna”
 - homatropine (1-3 d) - iritis
 - scopolamine (3-7 d) - motion sickness

- **Synthetic antimuscarinics**
 - ipratropium (quaternary amine) - asthma
 - pirenzepine (tri-cyclic, M1-selective) - ulcer
 - benztropine - Parkinson’s disease
 - glycopyrolate (quaternary amine)
 - cyclopentolate (tertiary amine)
 - propantheline (quaternary amine)

Anticholinergic Effects on Organ Systems

- **Heart:** tachycardia, ↑ A-V nodal CV (M2-receptors)
- **Vasculature:** no effect, although toxic doses cause pronounced vasodilation (red blotches)
- **Smooth muscle**
 - GI-tract, urinary tract: relaxation, ↓ secretion, ↓ motility
 - Lung: bronchial relaxation & ↓ bronchial secretions
 - Eye: mydriatic (sphincter relaxation), cyclopegic (ciliary muscle relaxation)
- **Secretions**
 - ↓ secretion: dry mouth, dry skin,
 - ↓ decreased gastric acid secretion
- **CNS:** agitation, delirium, confusion, elderly are more susceptible

Deadly Nightshade

- Approx 5,000 per yr

- Mainly atropine
- Devil’s apple
- Stink weed
- Devil’s cherries

Datura

- Mainly scopolamine & hyoscyamine
- Thorn apple
- Jimson weed
Other Parasympatholytics

Hemicholinium
- no clinical use
- inhibits uptake of choline into nerve terminal (rate limiting step)
- leads to decreased Ach synthesis

Botulinus toxin
- prevent release of Ach
- contamination of improperly prepared food

Clinical use: facial muscle spasms, strabismus, wrinkles

Clinical uses of Antimuscarinic Agents

- respiratory (decrease bronchial secretion) ie. atropine
- asthma ie. ipratropium
- ophthalmologic (mydriasis, cycloplegia) ie. iritis
- Parkinson's disease ie. benztrapine
- cardiovascular ie. atropine
- motion sickness ie. scopolamine
- GI disorders (peptic ulcers (pirenzepine), diarrhea)
- pesticide poisoning (malathion) ie. atropine
- nerve gases (sar) ie. atropine + 2-PAM

Toxicity and treatment

- Toxicity:
 dry mouth, mydriasis, tachycardia, hot flushed skin, agitation and delirium.
 High concentrations may cause ganglionic-blockade leading to hypotension

- Treatment:
 - quaternary cholinesterase inhibitor eg. neostigmine or physostigmine (cns action)
 - for hypotension: sympathomimetics (α-agonist, eg. methoxamine)

Symptoms of Antimuscarinic Toxicity

Belladonna (beautiful lady) poisoning

- mad as a hatter: CNS, delirium
- red as a beet: direct vasodilation
- blind as a bat: cycloplegia
- hot as hell (a hare): ↓sweat, thermoregulation
- dry as a bone: decreased secretions

Mad as a Hatter

Mercury was used to treat hats. It was applied on to the fur to roughen the fibres and make them mat more easily

Mercury is a cumulative poison that causes kidney and brain damage. Physical symptoms include trembling (known at the time as hatter's shakes), loosening of teeth, loss of co-ordination, and slurred speech; mental ones include irritability, loss of memory, depression, anxiety, and other personality changes. This was called mad hatter syndrome.
<table>
<thead>
<tr>
<th>Type</th>
<th>Members</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agonists</td>
<td>1. Ach</td>
<td>1. heart: bradycardia, decreased contractility, decreased conduction velocity in the AV node</td>
</tr>
<tr>
<td></td>
<td>2. Bethanecol</td>
<td>2. vasculature: mediate vasodilation via synthesis of NO by endothelial cells</td>
</tr>
<tr>
<td></td>
<td>4. Methacholine</td>
<td>4. eye: contraction of sphincter (miosis) & ciliary muscle for near vision</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. exocrine glands: sweating (SNS), salivation & gastric acid secretion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antagonists</th>
<th>Members</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. atropine</td>
<td>non-selective, long lasting</td>
<td></td>
</tr>
<tr>
<td>2. scopolamine</td>
<td>centrally acting</td>
<td></td>
</tr>
<tr>
<td>3. homatropine</td>
<td>shorter acting</td>
<td></td>
</tr>
<tr>
<td>4. pirenzepine</td>
<td>M1 receptor selective (anti-ulcer)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effects</th>
<th>Parasympathetic Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. heart</td>
<td>rapidly reversible (competitive)</td>
</tr>
<tr>
<td>2. vasculature</td>
<td>slowly reversible (competing substrate, carbamylates enzyme)</td>
</tr>
<tr>
<td>3. smooth muscle</td>
<td>irreversible or very slowly reversible (phosphorylates enzyme)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acetylcholinesterase Inhibitors</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edrophonium (competitive)</td>
<td>used for myasthenia gravis (aka Tensilon)</td>
</tr>
<tr>
<td>Neostigmine (competing substrate, carbamylates enzyme)</td>
<td>does not cross BBB; affects skeletal muscle most strongly; used for myasthenia gravis</td>
</tr>
<tr>
<td>Physostigmine (crosses BBB, used for glaucoma)</td>
<td>for treatment of belladonna poisoning</td>
</tr>
<tr>
<td>Pyridostigmine</td>
<td>used for myasthenia gravis</td>
</tr>
<tr>
<td>Demecarium</td>
<td>used for glaucoma</td>
</tr>
<tr>
<td>Ambenonium</td>
<td>used for myasthenia gravis</td>
</tr>
<tr>
<td>Demecarium</td>
<td>used for glaucoma</td>
</tr>
<tr>
<td>Echothiophate</td>
<td>used for glaucoma</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rapidly reversible (competitive)</th>
<th>Slowly reversible (competing substrate, carbamylates enzyme)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edrophonium (competitive)</td>
<td>Neostigmine (does not cross BBB, affects skeletal muscle most strongly; used for myasthenia gravis)</td>
</tr>
<tr>
<td>Physostigmine (crosses BBB, used for glaucoma)</td>
<td>for treatment of belladonna poisoning</td>
</tr>
<tr>
<td>Pyridostigmine (used for myasthenia gravis)</td>
<td>Demecarium (used for glaucoma)</td>
</tr>
<tr>
<td>Ambenonium (used for myasthenia gravis)</td>
<td>Demecarium (used for glaucoma)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Irreversible or very slowly reversible (phosphorylates enzyme)</th>
<th>Organophosphate insecticides, nerve gases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echothiophate (used for glaucoma)</td>
<td>used for glaucoma</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effects</th>
<th>Parasympathetic Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. heart</td>
<td>rapidly reversible (competitive)</td>
</tr>
<tr>
<td>2. vasculature</td>
<td>slowly reversible (competing substrate, carbamylates enzyme)</td>
</tr>
<tr>
<td>3. smooth muscle</td>
<td>irreversible or very slowly reversible (phosphorylates enzyme)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acetylcholinesterase Inhibitors</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edrophonium (competitive)</td>
<td>used for myasthenia gravis (aka Tensilon)</td>
</tr>
<tr>
<td>Neostigmine (competing substrate, carbamylates enzyme)</td>
<td>does not cross BBB; affects skeletal muscle most strongly; used for myasthenia gravis</td>
</tr>
<tr>
<td>Physostigmine (crosses BBB, used for glaucoma)</td>
<td>for treatment of belladonna poisoning</td>
</tr>
<tr>
<td>Pyridostigmine</td>
<td>used for myasthenia gravis</td>
</tr>
<tr>
<td>Demecarium</td>
<td>used for glaucoma</td>
</tr>
<tr>
<td>Ambenonium</td>
<td>used for myasthenia gravis</td>
</tr>
<tr>
<td>Demecarium</td>
<td>used for glaucoma</td>
</tr>
<tr>
<td>Echothiophate</td>
<td>used for glaucoma</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rapidly reversible (competitive)</th>
<th>Slowly reversible (competing substrate, carbamylates enzyme)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edrophonium (competitive)</td>
<td>Neostigmine (does not cross BBB, affects skeletal muscle most strongly; used for myasthenia gravis)</td>
</tr>
<tr>
<td>Physostigmine (crosses BBB, used for glaucoma)</td>
<td>for treatment of belladonna poisoning</td>
</tr>
<tr>
<td>Pyridostigmine (used for myasthenia gravis)</td>
<td>Demecarium (used for glaucoma)</td>
</tr>
<tr>
<td>Ambenonium (used for myasthenia gravis)</td>
<td>Demecarium (used for glaucoma)</td>
</tr>
<tr>
<td>Echothiophate (used for glaucoma)</td>
<td>used for glaucoma</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Irreversible or very slowly reversible (phosphorylates enzyme)</th>
<th>Organophosphate insecticides, nerve gases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echothiophate (used for glaucoma)</td>
<td>used for glaucoma</td>
</tr>
</tbody>
</table>