Pharmacology of the Neuromuscular Junction (NMJ)

Edward JN Ishac, Ph.D.

Smith Building, Room 742
eishac@hsc.vcu.edu
8-2127 8-2126

Department of Pharmacology and Toxicology
Medical College of Virginia
Campus of Virginia Commonwealth University
Richmond, Virginia, USA

Autonomic Nervous System

Neurons of the ANS

Neuromuscular Junction

NMJ Nicotinic Receptor

NMJ Blocking Agents

Ion Channel
• pentamer
• Na⁺ in
• K⁺ out

Infant: α₂βδε
Adult: α₂βδγ
NMJ Blocking Agents

Paralysis: small rapidly moving muscles (eyes, fingers), then limbs, last is respiratory muscles (recovery in reverse order)

- Competitive (non-depolarizing) agents (curare)
 - compete with Ach for binding to receptor
 - flaccid, relaxed paralysis
 - non-NMJ effects: ganglia, muscarinic blocking, histamine release
 - NMJ block can be reversed by AchE inhibitors

- Non-competitive (depolarizing) agents (succinylcholine)
 Phase 1 block:
 - membrane depolarization
 - transient fasciculations followed by paralysis
 Phase 2 block:
 - desensitization
 - membrane repolarizes, hyposensitive to Ach
 - NMJ block not reversed by AchE inhibitors

Competitive (nondepolarizing) Blocking Agents - Curare

- Tubocurarine, dimethyltubocarine (metocarline)
 - no effect on nerve transmission
 - muscle can still be stimulated
 - 5-10mg (iv) produces flaccid paralysis
 - 10-20mg (iv) can produce apnea, not active orally
 - can cause histamine release (mast cells)
 - can block ganglionic receptors [high concentration]

Competitive (nondepolarizing) Blocking Agents - Others

- Pancuronium
 - more potent than tubocurarine (x5)
 - reduced histamine release than curare
 - lack of ganglionic blockade

- Gallamine
 - also some muscarinic block

- Mivacurium
 - short acting, hydrolysis by AchE

- Atracurium
 - short acting, hydrolysis by AchE

Adverse Effects and Treatment

- Adverse effects:
 - apnea (loss of respiration)
 - ganglionic blockade (tubocurarine)
 - histamine release (tubocurarine)
 - muscarinic block (gallamine)
 - hypotension (histamine release & ganglionic block)
 - no significant CNS effects

- Treatment of toxicity:
 - Acetylcholinesterase inhibitors ie. neostigmine

Depolarizing NMJ Blocking Agents

- Succinylcholine (decamethonium, not used)
 - Phase 1: depolarization, Phase 2: desensitization
 - brief duration (5-10min)
 - metabolized by pseudocholinesterase
 - 'atypical' pseudo-AchE (1:10,000, long-lasting)
 - less histamine release than curare
 - less effect at ganglia than curare
 - not reversed by AchE inhibitors

Succinylcholine: Adverse effects & treatment

- Toxicity:
 - similar to competitive blockers with less effects at ganglia or histamine release

- Treatment:
 - Artificial respiration
 - use of AChE inhibitors will not reverse NMJ blockade

- Adverse reactions:
 - 'Atypical' pseudo-AchE (1:10,000, prolonged apnea, 2-3hr)
 - Hyperkalemia (esp. burn, trauma patients)
 - Malignant hyperthermia (esp. with halothane)
Hyperkalemia

- burn & trauma
- usually small ↑K+
- cardiac arrest
- support: dialysis glucose / insulin

![Hyperkalemia](image)

Malignant Hyperthermia

- more likely with halothane
- 60% mortality
- ↑Ca++ → ↑ body temp
- tachycardia
dysrhythmia
- THR, muscle rigidity

Treatment:
- Dantrolene
- drug of choice
- ↓Ca++ release

Clinical Uses of NMJ Blocking Agents

- **Muscle relaxation in surgery**
 - decreases depth of anesthesia
- **Orthopedics**
 - dislocations, alignment of fractures
- **Facilitate intubations**
 - in mechanical artificial ventilation
- **Facilitate internal examinations**
 - laryngoscopy, bronchoscopy, esophagoscopy
- **Prevent trauma**
 - during electroshock therapy
- **Diagnostic**
 - tubocurarine (Myasthenia gravis), not commonly used
 - not recommended, Edrophonium (Tensolin) better

NMJ Agents: Drug Interactions

- **Synergism with certain agents → ↓ dose**
- Calcium channel blockers ie. verapamil
 - ↓Ach release
- Aminoglycoside antibiotic ie. neomycin
 - compete with Ca++
 - ↓Ach release & stabilize membrane
 - Certain general anesthetic ie. halothane
 - stabilize membrane

Direct Acting Neuromuscular Relaxant

- **Dantrolene (Dantrium)**
 - inhibits calcium release
 - significant liver toxicity
 - muscle weakness
- **Clinical uses:**
 - stroke
 - cerebral palsy
 - malignant hyperthermia (DOC)
 - multiple sclerosis
- **Other agents**
 - Benzodiazepines

NMJ – Competitive vs Non Competitive

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NMJ Blocking Agents – Other Actions

<table>
<thead>
<tr>
<th></th>
<th>Ganglia</th>
<th>Muscarinic Receptors</th>
<th>Histamine Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>Succinylcholine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tubocurarine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metaocurine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gallamine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pancuronium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vecuronium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atracurium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doxacurium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipecuronium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mivacurium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mivacurium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mivacurium</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NMJ – Onset, Duration & Elimination

<table>
<thead>
<tr>
<th>Onset (min)</th>
<th>Duration (min)</th>
<th>Mode of elimination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Succinylcholine</td>
<td>1-2</td>
<td>6-8</td>
</tr>
<tr>
<td>Tubocurarine</td>
<td>4-6</td>
<td>80-120</td>
</tr>
<tr>
<td>Metaocurine</td>
<td>4-6</td>
<td>80-120</td>
</tr>
<tr>
<td>Gallamine</td>
<td>4-6</td>
<td>80-120</td>
</tr>
<tr>
<td>Pancuronium</td>
<td>4-6</td>
<td>80-120</td>
</tr>
<tr>
<td>Vecuronium</td>
<td>2-4</td>
<td>30-40</td>
</tr>
<tr>
<td>Atracurium</td>
<td>2-4</td>
<td>30-40</td>
</tr>
<tr>
<td>Doxacurium</td>
<td>4-6</td>
<td>90-120</td>
</tr>
<tr>
<td>Pipecuronium</td>
<td>2-4</td>
<td>80-100</td>
</tr>
<tr>
<td>Mivacurium</td>
<td>2-4</td>
<td>12-18</td>
</tr>
</tbody>
</table>